TY - JOUR
T1 - 2-methoxyestradiol sensitizes breast cancer cells to taxanes by targeting centrosomes
AU - El-Zein, Randa
AU - Thaiparambil, Jose
AU - Abdel-Rahman, Sherif Z.
N1 - Publisher Copyright:
© 2020 El-Zein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020
Y1 - 2020
N2 - Centrosomes amplification is a hallmark of cancer. We hypothesize that 2-methoxyestradiol (2-ME) sensitizes breast cancer (BC) cells to taxanes by targeting amplified centrosomes. We assessed the extent by which 2-ME together with paclitaxel (PTX) induces centrosome alterations with subsequent mitotic catastrophe in different BC subtypes. 2-ME induced a significant reduction in PTX IC50 values in all cells tested ranging from 28-44% (P < 0.05). Treatment with both PTX and 2-ME significantly increased the number of misaligned metaphases compared to PTX alone (34%, 100% and 52% for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). The number of cells with multipolar spindle formation was significantly increased (81%, 220% and 285% for MCF7, MDA-MB231 and SUM 149, respectively; P < 0.05). PTX and 2-ME treatment significantly increased interphase declustering in cancer cells (56% for MCF7, 208% for MDA-MB231 and 218% for SUM149, respectively; P < 0.05) and metaphase declustering (1.4-fold, 1.56-fold and 2.48-fold increase for MCF7, MDAMB231 and SUM149, respectively; P < 0.05). This report is the first to document centrosome declustering as a mechanism of action of 2-ME and provides a potential approach for reducing taxane toxicity in cancer treated patients.
AB - Centrosomes amplification is a hallmark of cancer. We hypothesize that 2-methoxyestradiol (2-ME) sensitizes breast cancer (BC) cells to taxanes by targeting amplified centrosomes. We assessed the extent by which 2-ME together with paclitaxel (PTX) induces centrosome alterations with subsequent mitotic catastrophe in different BC subtypes. 2-ME induced a significant reduction in PTX IC50 values in all cells tested ranging from 28-44% (P < 0.05). Treatment with both PTX and 2-ME significantly increased the number of misaligned metaphases compared to PTX alone (34%, 100% and 52% for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). The number of cells with multipolar spindle formation was significantly increased (81%, 220% and 285% for MCF7, MDA-MB231 and SUM 149, respectively; P < 0.05). PTX and 2-ME treatment significantly increased interphase declustering in cancer cells (56% for MCF7, 208% for MDA-MB231 and 218% for SUM149, respectively; P < 0.05) and metaphase declustering (1.4-fold, 1.56-fold and 2.48-fold increase for MCF7, MDAMB231 and SUM149, respectively; P < 0.05). This report is the first to document centrosome declustering as a mechanism of action of 2-ME and provides a potential approach for reducing taxane toxicity in cancer treated patients.
KW - 2-methoxyestradiol (2-ME)
KW - Breast cancer
KW - Centrosome amplification
KW - Centrosome declustering
UR - http://www.scopus.com/inward/record.url?scp=85098130259&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098130259&partnerID=8YFLogxK
U2 - 10.18632/ONCOTARGET.27810
DO - 10.18632/ONCOTARGET.27810
M3 - Article
AN - SCOPUS:85098130259
SN - 1949-2553
VL - 11
SP - 4479
EP - 4489
JO - Oncotarget
JF - Oncotarget
IS - 48
ER -