Abstract
This study evaluates the feasibility of producing a composite engineered tracheal equivalent composed of cylindrical cartilaginous structures with lumens lined with nasal epithelial cells. Chondrocytes and epithelial cells isolated from sheep nasal septum were cultured in Ham's F12 media. After 2 wk, chondrocyte suspensions were seeded onto a matrix of polyglycolic acid. Cell-polymer constructs were wrapped around silicon tubes and cultured in vitro for 1 wk, followed by implanting into subcutaneous pockets on the backs of nude mice. After 6 wk, epithelial cells were suspended in a hydrogel and injected into the embedded cartilaginous cylinders following removal of the silicon tube. Implants were harvested 4 wk later and analyzed. The morphology of implants resembles that of native sheep trachea. H&E staining shows the presence of mature cartilage and formation of a pseudostratified columnar epithelium, with a distinct interface between tissue-engineered cartilage and epithelium. Safranin-O staining shows that tissue-engineered cartilage is organized into lobules with round, angular lacunae, each containing a single chondrocyte. Proteoglycan and hydroxyproline contents are similar to native cartilage. This study demonstrates the feasibility of recreating the cartilage and epithelial portion of the trachea using tissue harvested in a single procedure. This has the potential to facilitate an autologous repair of segmental tracheal defects.
Original language | English (US) |
---|---|
Pages (from-to) | 823-828 |
Number of pages | 6 |
Journal | FASEB Journal |
Volume | 17 |
Issue number | 8 |
DOIs | |
State | Published - May 2003 |
Externally published | Yes |
Keywords
- Chondrocytes
- Hydrogel tracheal replacement
- Polyglycolic acid (PGA)
ASJC Scopus subject areas
- Biotechnology
- Biochemistry
- Molecular Biology
- Genetics