TY - JOUR
T1 - A methodology for utilization of predictive genomic signatures in FFPE samples
AU - Freedman, Jennifer A.
AU - Augustine, Christina K.
AU - Selim, Angelica M.
AU - Holshausen, Kirsten C.
AU - Wei, Zhengzheng
AU - Tsamis, Katherine A.
AU - Hsu, David S.
AU - Dressman, Holly K.
AU - Barry, William T.
AU - Tyler, Douglas S.
AU - Nevins, Joseph R.
N1 - Funding Information:
We thank members of the Nevins laboratory for valuable input throughout the course of this work and for comments on the manuscript. We thank Kaye Culler for assistance with the preparation of the manuscript. We thank the Duke Microarray Core facility (a Duke NCI Comprehensive Cancer Institute and a Duke Institute for Genome Sciences and Policy shared resource facility) for the technical support, microarray data management and feedback on the generation of the microarray data reported in this manuscript. The project described was supported by awards to JRN (RO1CA104663, RO1CA106520, and U54CA112952) from the National Cancer Institute and to DST (AHX2007-075 D100-C from Adherex Technologies, Inc. and Veterans Affairs Merit Review Grant). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.
PY - 2011
Y1 - 2011
N2 - Background: Gene expression signatures developed to measure the activity of oncogenic signaling pathways have been used to dissect the heterogeneity of tumor samples and to predict sensitivity to various cancer drugs that target components of the relevant pathways, thus potentially identifying therapeutic options for subgroups of patients. To facilitate broad use, including in a clinical setting, the ability to generate data from formalin-fixed, paraffin-embedded (FFPE) tissues is essential. Methods. Patterns of pathway activity in matched fresh-frozen and FFPE xenograft tumor samples were generated using the MessageAmp Premier methodology in combination with assays using Affymetrix arrays. Results generated were compared with those obtained from fresh-frozen samples using a standard Affymetrix assay. In addition, gene expression data from patient matched fresh-frozen and FFPE melanomas were also utilized to evaluate the consistency of predictions of oncogenic signaling pathway status. Results: Significant correlation was observed between pathway activity predictions from paired fresh-frozen and FFPE xenograft tumor samples. In addition, significant concordance of pathway activity predictions was also observed between patient matched fresh-frozen and FFPE melanomas. Conclusions: Reliable and consistent predictions of oncogenic pathway activities can be obtained from FFPE tumor tissue samples. The ability to reliably utilize FFPE patient tumor tissue samples for genomic analyses will lead to a better understanding of the biology of disease progression and, in the clinical setting, will provide tools to guide the choice of therapeutics to those most likely to be effective in treating a patient's disease.
AB - Background: Gene expression signatures developed to measure the activity of oncogenic signaling pathways have been used to dissect the heterogeneity of tumor samples and to predict sensitivity to various cancer drugs that target components of the relevant pathways, thus potentially identifying therapeutic options for subgroups of patients. To facilitate broad use, including in a clinical setting, the ability to generate data from formalin-fixed, paraffin-embedded (FFPE) tissues is essential. Methods. Patterns of pathway activity in matched fresh-frozen and FFPE xenograft tumor samples were generated using the MessageAmp Premier methodology in combination with assays using Affymetrix arrays. Results generated were compared with those obtained from fresh-frozen samples using a standard Affymetrix assay. In addition, gene expression data from patient matched fresh-frozen and FFPE melanomas were also utilized to evaluate the consistency of predictions of oncogenic signaling pathway status. Results: Significant correlation was observed between pathway activity predictions from paired fresh-frozen and FFPE xenograft tumor samples. In addition, significant concordance of pathway activity predictions was also observed between patient matched fresh-frozen and FFPE melanomas. Conclusions: Reliable and consistent predictions of oncogenic pathway activities can be obtained from FFPE tumor tissue samples. The ability to reliably utilize FFPE patient tumor tissue samples for genomic analyses will lead to a better understanding of the biology of disease progression and, in the clinical setting, will provide tools to guide the choice of therapeutics to those most likely to be effective in treating a patient's disease.
UR - http://www.scopus.com/inward/record.url?scp=79960070660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960070660&partnerID=8YFLogxK
U2 - 10.1186/1755-8794-4-58
DO - 10.1186/1755-8794-4-58
M3 - Article
C2 - 21745407
AN - SCOPUS:79960070660
SN - 1755-8794
VL - 4
JO - BMC Medical Genomics
JF - BMC Medical Genomics
M1 - 58
ER -