A multiplexed dna fish strategy for assessing genome architecture in caenorhabditis elegans

Brandon D. Fields, Son C. Nguyen, Guy Nir, Scott Kennedy

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Eukaryotic DNA is highly organized within nuclei and this organization is important for genome function. Fluorescent in situ hybridization (FISH) approaches allow 3D architectures of genomes to be visualized. Scalable FISH technologies, which can be applied to whole animals, are needed to help unravel how genomic architecture regulates, or is regulated by, gene expression during development, growth, reproduction, and aging. Here, we describe a multiplexed DNA FISH Oligopaint library that targets the entire Caenorhabditis elegans genome at chromosome, three megabase, and 500 kb scales. We describe a hybridization strategy that provides flexibility to DNA FISH experiments by coupling a single primary probe synthesis reaction to dye conjugated detection oligos via bridge oligos, eliminating the time and cost typically associated with labeling probe sets for individual experiments. The approach allows visualization of genome organization at varying scales in all/most cells across all stages of development in an intact animal model system.

Original languageEnglish (US)
Article numbere42823
JournaleLife
Volume8
DOIs
StatePublished - May 2019
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'A multiplexed dna fish strategy for assessing genome architecture in caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this