A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production

Research output: Contribution to journalArticle

44 Scopus citations


We have isolated a naturally arising human immunodeficiency type 1 (HIV- 1) mutant containing a point mutation within the env gene. The point mutation resulted in complete loss of balanced splicing, with dominant production of aberrant mRNAs. The aberrant RNAs arose via activation of normally cryptic splice sites flanking the mutation within the env terminal exon to create exon 6D, which was subsequently incorporated in aberrant, env, tat, rev, and nef mRNAs. Aberrant multiply spliced messages contributed to reduced virus replication as a result of a reduction in wild-type Rev protein. The point mutation within exon 6D activated exon 6D inclusion when the exon and its flanking splice sites were transferred to a heterologous minigene. Introduction of the point mutation into an otherwise wild-type HIV-1 proviral clone resulted in virus that was severely inhibited for replication in T cells and displayed elevated usage of exon 6D. Exon 6D contains a bipartite elements similar to that seen in tat exon 3 of HIV-1, consisting of a potential exon splicing silencer (ESS) juxtaposed to a purine-rich sequence similar to known exon splicing enhancers. In the absence of a flanking 5' splice site, the point mutation within the exon 6D ESS-like element strongly activated env splicing, suggesting that the putative ESS plays a natural role in limiting the level of env splicing. We propose, therefore, that exons silencers may be a common element in the HIV-1 genome used to create balanced splicing of multiple products from a single precursor RNA.


ASJC Scopus subject areas

  • Immunology

Cite this