Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulfate model of colitis

Laila D. McVay, Sue A. Keilbaugh, Tracie M.H. Wong, Sonja Kierstein, Marcus E. Shin, Michael Lehrke, Martina I. Lefterova, D. Edward Shifflett, Sean L. Barnes, Fabio Cominelli, Steven M. Cohn, Gail Hecht, Mitchell A. Lazar, Angela Haczku, Gary D. Wu

Research output: Contribution to journalArticlepeer-review

92 Scopus citations


Although inflammatory bowel disease (IBD) is the result of a dysregulated immune response to commensal gut bacteria in genetically predisposed individuals, the mechanism(s) by which bacteria lead to the development of IBD are unknown. Interestingly, deletion of intestinal goblet cells protects against intestinal injury, suggesting that this epithelial cell lineage may produce molecules that exacerbate IBD. We previously reported that resistin-like molecule β (RELMβ; also known as FIZZ2) is an intestinal goblet cell-specific protein that is induced upon bacterial colonization whereupon it is expressed in the ileum and colon, regions of the gut most often involved in IBD. Herein, we show that disruption of this gene reduces the severity of colitis in the dextran sodium sulfate (DSS) model of murine colonic injury. Although RELMβ does not alter colonic epithelial proliferation or barrier function, we show that recombinant protein activates macrophages to produce TNF-α both in vitro and in vivo. RELMβ expression is also strongly induced in the terminal ileum of the SAMP1/Fc model of IBD. These results suggest a model whereby the loss of epithelial barrier function by DSS results in the activation of the innate mucosal response by RELMβ located in the lumen, supporting the hypothesis that this protein is a link among goblet cells, commensal bacteria, and the pathogenesis of IBD.

Original languageEnglish (US)
Pages (from-to)2914-2923
Number of pages10
JournalJournal of Clinical Investigation
Issue number11
StatePublished - Nov 1 2006
Externally publishedYes

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulfate model of colitis'. Together they form a unique fingerprint.

Cite this