Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a

Ashish Saxena, Ravinder Tammali, Kota Ramana, Satish Srivastava

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Aims: We have shown earlier that inhibition of aldose reductase (AR), an oxidative stress-response protein, prevents colon cancer cell growth in vitro and in vivo. Changes in microribonucleic acid (miR) expression can contribute to cancer by modulating the functional expression of critical genes involved in cancer growth and metastasis. However, the molecular mechanisms by which AR regulates miR expression and their dependent mitogenic effects in cancer cells are not known. Therefore, we investigated how AR regulates growth factor-induced expression of miRs and growth of colon cancer cells. Results: Inhibition of AR significantly downregulated growth factor-induced miR-21 expression in human colon cancer cells, HT29, SW480, and Caco-2. Further, AR inhibition also increased phosphatase and tensin homolog (PTEN) (a direct target of miR-21) and forkhead box O3A (FOXO3a) in colon cancer cells. Our results obtained with HT29 cells ablated with FOXO3a siRNA showed increased activator protein-1 (AP-1) activation and miR-21 expression, indicating that FOXO3a represses miR-21 via AP-1 inactivation. Inhibition of AR also prevented the epidermal growth factor-induced phosphorylation of phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), c-Jun, c-Fos, PTEN, and FOXO3a, and deoxyribonucleic acid (DNA)-binding activity of AP-1. More importantly, in human colon adenocarcinoma xenograft tissues, miR-21 expression was lower, and PTEN and FOXO3a levels were significantly higher in AR inhibitor-treated mice compared to controls. Innovation: These findings demonstrate a novel role of AR in the regulation of miR-21 and its target PTEN in growth factor-induced colon cancer cell growth. Conclusions: Collectively, these results show a novel role of AR in mediation of growth factor-induced colon cancer growth by modulating miR-21, PTEN, and FOXO3a expression through reactive oxygen species (ROS)/PI3K/AKT/AP-1. Antioxid. Redox Signal. 18, 1249-1262.

Original languageEnglish (US)
Pages (from-to)1249-1262
Number of pages14
JournalAntioxidants and Redox Signaling
Volume18
Issue number11
DOIs
StatePublished - Apr 10 2013

Fingerprint

Aldehyde Reductase
Phosphoric Monoester Hydrolases
Colonic Neoplasms
Modulation
Acids
Growth
Transcription Factor AP-1
Intercellular Signaling Peptides and Proteins
Cells
Phosphatidylinositol 3-Kinase
HT29 Cells
Cell growth
Tensins
Neoplasms
Phosphorylation
Oxidative stress
Protein-Serine-Threonine Kinases
Acid Phosphatase
Heat-Shock Proteins
Epidermal Growth Factor

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology
  • Physiology
  • Clinical Biochemistry

Cite this

Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a. / Saxena, Ashish; Tammali, Ravinder; Ramana, Kota; Srivastava, Satish.

In: Antioxidants and Redox Signaling, Vol. 18, No. 11, 10.04.2013, p. 1249-1262.

Research output: Contribution to journalArticle

@article{6a2396f41f8145cc9dd6158ea6445990,
title = "Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a",
abstract = "Aims: We have shown earlier that inhibition of aldose reductase (AR), an oxidative stress-response protein, prevents colon cancer cell growth in vitro and in vivo. Changes in microribonucleic acid (miR) expression can contribute to cancer by modulating the functional expression of critical genes involved in cancer growth and metastasis. However, the molecular mechanisms by which AR regulates miR expression and their dependent mitogenic effects in cancer cells are not known. Therefore, we investigated how AR regulates growth factor-induced expression of miRs and growth of colon cancer cells. Results: Inhibition of AR significantly downregulated growth factor-induced miR-21 expression in human colon cancer cells, HT29, SW480, and Caco-2. Further, AR inhibition also increased phosphatase and tensin homolog (PTEN) (a direct target of miR-21) and forkhead box O3A (FOXO3a) in colon cancer cells. Our results obtained with HT29 cells ablated with FOXO3a siRNA showed increased activator protein-1 (AP-1) activation and miR-21 expression, indicating that FOXO3a represses miR-21 via AP-1 inactivation. Inhibition of AR also prevented the epidermal growth factor-induced phosphorylation of phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), c-Jun, c-Fos, PTEN, and FOXO3a, and deoxyribonucleic acid (DNA)-binding activity of AP-1. More importantly, in human colon adenocarcinoma xenograft tissues, miR-21 expression was lower, and PTEN and FOXO3a levels were significantly higher in AR inhibitor-treated mice compared to controls. Innovation: These findings demonstrate a novel role of AR in the regulation of miR-21 and its target PTEN in growth factor-induced colon cancer cell growth. Conclusions: Collectively, these results show a novel role of AR in mediation of growth factor-induced colon cancer growth by modulating miR-21, PTEN, and FOXO3a expression through reactive oxygen species (ROS)/PI3K/AKT/AP-1. Antioxid. Redox Signal. 18, 1249-1262.",
author = "Ashish Saxena and Ravinder Tammali and Kota Ramana and Satish Srivastava",
year = "2013",
month = "4",
day = "10",
doi = "10.1089/ars.2012.4643",
language = "English (US)",
volume = "18",
pages = "1249--1262",
journal = "Antioxidants and Redox Signaling",
issn = "1523-0864",
publisher = "Mary Ann Liebert Inc.",
number = "11",

}

TY - JOUR

T1 - Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a

AU - Saxena, Ashish

AU - Tammali, Ravinder

AU - Ramana, Kota

AU - Srivastava, Satish

PY - 2013/4/10

Y1 - 2013/4/10

N2 - Aims: We have shown earlier that inhibition of aldose reductase (AR), an oxidative stress-response protein, prevents colon cancer cell growth in vitro and in vivo. Changes in microribonucleic acid (miR) expression can contribute to cancer by modulating the functional expression of critical genes involved in cancer growth and metastasis. However, the molecular mechanisms by which AR regulates miR expression and their dependent mitogenic effects in cancer cells are not known. Therefore, we investigated how AR regulates growth factor-induced expression of miRs and growth of colon cancer cells. Results: Inhibition of AR significantly downregulated growth factor-induced miR-21 expression in human colon cancer cells, HT29, SW480, and Caco-2. Further, AR inhibition also increased phosphatase and tensin homolog (PTEN) (a direct target of miR-21) and forkhead box O3A (FOXO3a) in colon cancer cells. Our results obtained with HT29 cells ablated with FOXO3a siRNA showed increased activator protein-1 (AP-1) activation and miR-21 expression, indicating that FOXO3a represses miR-21 via AP-1 inactivation. Inhibition of AR also prevented the epidermal growth factor-induced phosphorylation of phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), c-Jun, c-Fos, PTEN, and FOXO3a, and deoxyribonucleic acid (DNA)-binding activity of AP-1. More importantly, in human colon adenocarcinoma xenograft tissues, miR-21 expression was lower, and PTEN and FOXO3a levels were significantly higher in AR inhibitor-treated mice compared to controls. Innovation: These findings demonstrate a novel role of AR in the regulation of miR-21 and its target PTEN in growth factor-induced colon cancer cell growth. Conclusions: Collectively, these results show a novel role of AR in mediation of growth factor-induced colon cancer growth by modulating miR-21, PTEN, and FOXO3a expression through reactive oxygen species (ROS)/PI3K/AKT/AP-1. Antioxid. Redox Signal. 18, 1249-1262.

AB - Aims: We have shown earlier that inhibition of aldose reductase (AR), an oxidative stress-response protein, prevents colon cancer cell growth in vitro and in vivo. Changes in microribonucleic acid (miR) expression can contribute to cancer by modulating the functional expression of critical genes involved in cancer growth and metastasis. However, the molecular mechanisms by which AR regulates miR expression and their dependent mitogenic effects in cancer cells are not known. Therefore, we investigated how AR regulates growth factor-induced expression of miRs and growth of colon cancer cells. Results: Inhibition of AR significantly downregulated growth factor-induced miR-21 expression in human colon cancer cells, HT29, SW480, and Caco-2. Further, AR inhibition also increased phosphatase and tensin homolog (PTEN) (a direct target of miR-21) and forkhead box O3A (FOXO3a) in colon cancer cells. Our results obtained with HT29 cells ablated with FOXO3a siRNA showed increased activator protein-1 (AP-1) activation and miR-21 expression, indicating that FOXO3a represses miR-21 via AP-1 inactivation. Inhibition of AR also prevented the epidermal growth factor-induced phosphorylation of phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), c-Jun, c-Fos, PTEN, and FOXO3a, and deoxyribonucleic acid (DNA)-binding activity of AP-1. More importantly, in human colon adenocarcinoma xenograft tissues, miR-21 expression was lower, and PTEN and FOXO3a levels were significantly higher in AR inhibitor-treated mice compared to controls. Innovation: These findings demonstrate a novel role of AR in the regulation of miR-21 and its target PTEN in growth factor-induced colon cancer cell growth. Conclusions: Collectively, these results show a novel role of AR in mediation of growth factor-induced colon cancer growth by modulating miR-21, PTEN, and FOXO3a expression through reactive oxygen species (ROS)/PI3K/AKT/AP-1. Antioxid. Redox Signal. 18, 1249-1262.

UR - http://www.scopus.com/inward/record.url?scp=84874455699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874455699&partnerID=8YFLogxK

U2 - 10.1089/ars.2012.4643

DO - 10.1089/ars.2012.4643

M3 - Article

C2 - 22978663

AN - SCOPUS:84874455699

VL - 18

SP - 1249

EP - 1262

JO - Antioxidants and Redox Signaling

JF - Antioxidants and Redox Signaling

SN - 1523-0864

IS - 11

ER -