TY - JOUR
T1 - Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages
AU - Ramana, Kota
AU - Fadl, Amin A.
AU - Tammali, Ravinder
AU - Reddy, Aramati B.M.
AU - Chopra, Ashok K.
AU - Srivastava, Satish
PY - 2006/11/3
Y1 - 2006/11/3
N2 - Abnormal production of inflammatory cytokines and chemokines is a key feature of bacterial endotoxin, lipopolysaccharide (LPS)-induced inflammation, and cytotoxicity; however, the mechanisms regulating production of inflammatory markers remain unclear. Herein, we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR; AKR1B3) modulates NF-κB-dependent activation of inflammatory cytokines and chemokines in mouse serum, liver, heart, and spleen. Pharmacological inhibition or small interfering RNA ablation of AR prevented the biosynthesis of tumor necrosis factor-α, interleukin 1β, interleukin-6, macrophage-chemoattractant protein-1, and cyclooxygenase-2 and prostaglandin E2 in LPS-activated RAW264.7 murine macrophages. The AR inhibition or ablation significantly attenuated LPS-induced activation of protein kinase C (PKC) and phospholipase C (PLC), nuclear translocation of NF-κB, and phosphorylation and proteolytic degradation of IκBα in macrophages. Furthermore, treatment of macrophages with 4-hydroxy-trans-2-nonenal (HNE), and cell-permeable esters of glutathionyl-4-hydroxynonanal (GS-HNE) and glutathionyl-1,4-dihydroxynonane (GSDHN) activated NF-κB and PLC/PKC. Pharmacological inhibition or antisense ablation of AR that catalyzes the reduction of GS-HNE to GS-DHN prevented PLC, PKC, IKKα/β, and NF-κB activation caused by HNE and GS-HNE, but not by GS-DHN, suggesting that reduced GS-lipid aldehydes catalyzed by AR propagate LPS-induced production of inflammatory markers. Collectively, these data provide evidence that inhibition of AR may be a significant therapeutic approach in preventing bacterial endotoxin-induced sepsis and tissue damage.
AB - Abnormal production of inflammatory cytokines and chemokines is a key feature of bacterial endotoxin, lipopolysaccharide (LPS)-induced inflammation, and cytotoxicity; however, the mechanisms regulating production of inflammatory markers remain unclear. Herein, we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR; AKR1B3) modulates NF-κB-dependent activation of inflammatory cytokines and chemokines in mouse serum, liver, heart, and spleen. Pharmacological inhibition or small interfering RNA ablation of AR prevented the biosynthesis of tumor necrosis factor-α, interleukin 1β, interleukin-6, macrophage-chemoattractant protein-1, and cyclooxygenase-2 and prostaglandin E2 in LPS-activated RAW264.7 murine macrophages. The AR inhibition or ablation significantly attenuated LPS-induced activation of protein kinase C (PKC) and phospholipase C (PLC), nuclear translocation of NF-κB, and phosphorylation and proteolytic degradation of IκBα in macrophages. Furthermore, treatment of macrophages with 4-hydroxy-trans-2-nonenal (HNE), and cell-permeable esters of glutathionyl-4-hydroxynonanal (GS-HNE) and glutathionyl-1,4-dihydroxynonane (GSDHN) activated NF-κB and PLC/PKC. Pharmacological inhibition or antisense ablation of AR that catalyzes the reduction of GS-HNE to GS-DHN prevented PLC, PKC, IKKα/β, and NF-κB activation caused by HNE and GS-HNE, but not by GS-DHN, suggesting that reduced GS-lipid aldehydes catalyzed by AR propagate LPS-induced production of inflammatory markers. Collectively, these data provide evidence that inhibition of AR may be a significant therapeutic approach in preventing bacterial endotoxin-induced sepsis and tissue damage.
UR - http://www.scopus.com/inward/record.url?scp=33845962827&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845962827&partnerID=8YFLogxK
U2 - 10.1074/jbc.M603819200
DO - 10.1074/jbc.M603819200
M3 - Article
C2 - 16956889
AN - SCOPUS:33845962827
SN - 0021-9258
VL - 281
SP - 33019
EP - 33029
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 44
ER -