An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein

Research output: Contribution to journalArticle

118 Citations (Scopus)

Abstract

Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for 'intronic splicing activator and repressor') which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.

Original languageEnglish (US)
Pages (from-to)7388-7400
Number of pages13
JournalMolecular and Cellular Biology
Volume20
Issue number19
DOIs
StatePublished - 2000
Externally publishedYes

Fingerprint

Polypyrimidine Tract-Binding Protein
Receptor, Fibroblast Growth Factor, Type 2
Exons
Protein Isoforms
Transcriptional Silencer Elements

ASJC Scopus subject areas

  • Cell Biology
  • Genetics
  • Molecular Biology

Cite this

@article{0b471b12ed6f4266b54a4a22e4bba95b,
title = "An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein",
abstract = "Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for 'intronic splicing activator and repressor') which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.",
author = "Carstens, {R. P.} and Eric Wagner and Mariano Garcia-Blanco",
year = "2000",
doi = "10.1128/MCB.20.19.7388-7400.2000",
language = "English (US)",
volume = "20",
pages = "7388--7400",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "19",

}

TY - JOUR

T1 - An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein

AU - Carstens, R. P.

AU - Wagner, Eric

AU - Garcia-Blanco, Mariano

PY - 2000

Y1 - 2000

N2 - Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for 'intronic splicing activator and repressor') which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.

AB - Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for 'intronic splicing activator and repressor') which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.

UR - http://www.scopus.com/inward/record.url?scp=0033835133&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033835133&partnerID=8YFLogxK

U2 - 10.1128/MCB.20.19.7388-7400.2000

DO - 10.1128/MCB.20.19.7388-7400.2000

M3 - Article

VL - 20

SP - 7388

EP - 7400

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 19

ER -