Androgen aggravates aortic aneurysms via suppressing PD-1 in mice

Xufang Mu, Shu Liu, Zhuoran Wang, Kai Jiang, Tim McClintock, Arnold J. Stromberg, Alejandro V. Tezanos, Eugene S. Lee, John A. Curci, Ming C. Gong, Zhenheng Guo

Research output: Contribution to journalArticlepeer-review


Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms, a devastating vascular disease with a higher prevalence and fatality rate in men than women. However, the mechanism by which androgen mediates aortic aneurysms is largely unknown. Herein, we found that male mice, not female mice, developed aortic aneurysms when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (AR) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and aortic aneurysms. We demonstrated that administration of anti-PD-1 Ab and adoptive PD-1 deficient T cell transfer reinstated Aldo-salt-induced aortic aneurysms in orchiectomized mice, and genetic deletion of PD-1 exacerbated aortic aneurysms induced by high-fat diet and angiotensin II (Ang II) in non-orchiectomized mice. Mechanistically, we discovered that AR bound to the PD-1 promoter to suppress its expression in the spleen. Thus, our study unveils a mechanism by which androgen aggravates aortic aneurysms by suppressing PD-1 expression in T cells. Moreover, our study suggests that some cancer patients might benefit from screenings for aortic aneurysms during immune checkpoint therapy.

Original languageEnglish (US)
Article number169085
JournalJournal of Clinical Investigation
Issue number12
StatePublished - Jun 17 2024

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Androgen aggravates aortic aneurysms via suppressing PD-1 in mice'. Together they form a unique fingerprint.

Cite this