Angiogenesis in Tissue-Engineered Small Intestine

James Gardner-Thorpe, Tracy C. Grikscheit, Hiromichi Ito, Alexander Perez, Stanley W. Ashley, Joseph P. Vacanti, Edward E. Whang

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Tissue-engineered intestine offers promise as a potential novel therapy for short bowel syndrome. In this study we characterized the microvasculature and angiogenic growth factor profile of the engineered intestine. Twenty-three tissue-engineered small intestinal grafts were harvested from Lewis rat recipients 1 to 8 weeks after implantation. Architectural similarity to native bowel obtained from juvenile rats was assessed with hematoxylin and eosin-stained sections. Capillary density, measured after immunohistochemical staining for CD34, was expressed as number of capillaries per 1000 nuclei. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) tissue levels were measured by ELISA and normalized to total protein. Over the 8-week period cysts increased in volume (0.5 cm3 at week 1 versus 12.6 cm3 at week 8) and mass (1.30 ± 0.29 versus 9.74 ± 0.3 g; mean ± SEM). Muscular and mucosal layers increased in thickness, but capillary density remained constant (82.95 ± 4.81 capillaries per 1000 nuclei). The VEGF level was significantly higher in juvenile rat bowel than in engineered cyst (147.6 ± 23.9 versus 42.3 ± 3.4 pg/mg; p < 0.001). Tissue bFGF levels were also higher (315 ± 65.48 versus 162.3 ± 15.09 pg/mg; p < 0.05). The mechanism driving angiogenesis differs in engineered intestine and in normal bowel. VEGF and bFGF delivery may prove useful for bioengineering of intestine.

Original languageEnglish (US)
Pages (from-to)1255-1261
Number of pages7
JournalTissue Engineering
Volume9
Issue number6
DOIs
StatePublished - Dec 2003
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Biotechnology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Angiogenesis in Tissue-Engineered Small Intestine'. Together they form a unique fingerprint.

Cite this