Anti-HIV Double Variable Domain Immunoglobulins Binding Both gp41 and gp120 for Targeted Delivery of Immunoconjugates

Ryan B. Craig, Christopher M. Summa, Miriam Corti, Seth H. Pincus

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Background: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

Original languageEnglish (US)
Article numbere46778
JournalPLoS One
Volume7
Issue number10
DOIs
StatePublished - Oct 4 2012
Externally publishedYes

Fingerprint

Immunoconjugates
immunoglobulins
Immunoglobulins
HIV
Molecules
epitopes
Epitopes
HIV Envelope Protein gp41
Human Immunodeficiency Virus Proteins
Synthetic Genes
synthetic genes
molecular models
antibodies
Molecular Models
Videodisks
Immunoglobulin Domains
Antibodies
HIV infections
cells
neutralization

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Anti-HIV Double Variable Domain Immunoglobulins Binding Both gp41 and gp120 for Targeted Delivery of Immunoconjugates. / Craig, Ryan B.; Summa, Christopher M.; Corti, Miriam; Pincus, Seth H.

In: PLoS One, Vol. 7, No. 10, e46778, 04.10.2012.

Research output: Contribution to journalArticle

Craig, Ryan B. ; Summa, Christopher M. ; Corti, Miriam ; Pincus, Seth H. / Anti-HIV Double Variable Domain Immunoglobulins Binding Both gp41 and gp120 for Targeted Delivery of Immunoconjugates. In: PLoS One. 2012 ; Vol. 7, No. 10.
@article{a58f7fec3cc9436d8c66466a7cc19e3b,
title = "Anti-HIV Double Variable Domain Immunoglobulins Binding Both gp41 and gp120 for Targeted Delivery of Immunoconjugates",
abstract = "Background: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.",
author = "Craig, {Ryan B.} and Summa, {Christopher M.} and Miriam Corti and Pincus, {Seth H.}",
year = "2012",
month = "10",
day = "4",
doi = "10.1371/journal.pone.0046778",
language = "English (US)",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Anti-HIV Double Variable Domain Immunoglobulins Binding Both gp41 and gp120 for Targeted Delivery of Immunoconjugates

AU - Craig, Ryan B.

AU - Summa, Christopher M.

AU - Corti, Miriam

AU - Pincus, Seth H.

PY - 2012/10/4

Y1 - 2012/10/4

N2 - Background: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

AB - Background: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes. Methods: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. Findings: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. Conclusions: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

UR - http://www.scopus.com/inward/record.url?scp=84867136866&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867136866&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0046778

DO - 10.1371/journal.pone.0046778

M3 - Article

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e46778

ER -