TY - JOUR
T1 - Applications of bioorthogonal chemistry in tumor-targeted drug discovery
AU - Liu, Gang
AU - Wold, Eric A.
AU - Zhou, Jia
N1 - Publisher Copyright:
© 2019 Bentham Science Publishers.
PY - 2019
Y1 - 2019
N2 - Chemical reactions that can proceed in living systems while not interfering with native biochemical processes are collectively referred to as bioorthogonal chemistry. Selectivity, efficiency, and aqueous compatibility are three significant characteristics of an ideal bioorthogonal reaction. To date, the specialized bioorthogonal reactions that have been reported include: Cu (I)-catalyzed [3 + 2] azido– alkyne cycloadditions (CuAAC), strain-promoted [3 + 2] azide–alkyne cycloadditions (SPAAC), Staudinger ligation, photo-click 1,3-dipolar cycloadditions, strain-promoted alkyne-nitrone cycloadditions (SPANC), transition metal catalysis (TMC), and inverse electron demand Diels–Alder (IEDDA). These reactions are divided into two subtypes, 1) bond-formation reactions (e.g. CuAAC, SPAAC, photo-click cycloadditions, SPANC), which can be conventionally applied in the chemical biology field for target identification, protein-specific modifications and others; and 2) bond-release reactions (e.g. Staudinger ligation, TMC, and IEDDA), which are emerging as powerful approaches for the study of protein activation and drug discovery. Over the past decade, bioorthogonal chemistry has enabled important compound design features in targeted drug discovery and has expanded biological knowledge on intractable targets. Research groups have also focused on the discovery of reactions with improved biocompatibility and increased reaction rates, which will undoubtably prove essential for future therapeutic development. Herein, we highlight two significant applications of bioorthogonal chemistry to drug discovery, which are tumor-targeted prodrug delivery and activation, and self-assembly of bifunctional molecules. The relevant challenges and opportunities are also discussed.
AB - Chemical reactions that can proceed in living systems while not interfering with native biochemical processes are collectively referred to as bioorthogonal chemistry. Selectivity, efficiency, and aqueous compatibility are three significant characteristics of an ideal bioorthogonal reaction. To date, the specialized bioorthogonal reactions that have been reported include: Cu (I)-catalyzed [3 + 2] azido– alkyne cycloadditions (CuAAC), strain-promoted [3 + 2] azide–alkyne cycloadditions (SPAAC), Staudinger ligation, photo-click 1,3-dipolar cycloadditions, strain-promoted alkyne-nitrone cycloadditions (SPANC), transition metal catalysis (TMC), and inverse electron demand Diels–Alder (IEDDA). These reactions are divided into two subtypes, 1) bond-formation reactions (e.g. CuAAC, SPAAC, photo-click cycloadditions, SPANC), which can be conventionally applied in the chemical biology field for target identification, protein-specific modifications and others; and 2) bond-release reactions (e.g. Staudinger ligation, TMC, and IEDDA), which are emerging as powerful approaches for the study of protein activation and drug discovery. Over the past decade, bioorthogonal chemistry has enabled important compound design features in targeted drug discovery and has expanded biological knowledge on intractable targets. Research groups have also focused on the discovery of reactions with improved biocompatibility and increased reaction rates, which will undoubtably prove essential for future therapeutic development. Herein, we highlight two significant applications of bioorthogonal chemistry to drug discovery, which are tumor-targeted prodrug delivery and activation, and self-assembly of bifunctional molecules. The relevant challenges and opportunities are also discussed.
KW - Bifunctional molecules
KW - Bioorthogonal Chemistry
KW - Chemical reactions
KW - Protein activation
KW - Tumor-targeted drug discovery
UR - http://www.scopus.com/inward/record.url?scp=85071047835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071047835&partnerID=8YFLogxK
U2 - 10.2174/1568026619666190510091921
DO - 10.2174/1568026619666190510091921
M3 - Article
C2 - 31074366
AN - SCOPUS:85071047835
SN - 1568-0266
VL - 19
SP - 892
EP - 897
JO - Current topics in medicinal chemistry
JF - Current topics in medicinal chemistry
IS - 11
ER -