ATP-Dependent Transport of Glutathione-N-Ethylmaleimide Conjugate across Erythrocyte Membrane

P. Khanna, K. Kumari, Naseem Ansari, Satish Srivastava

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Prevailing controversies regarding the identity and nature of S-(2,4-dinitrophenyl) glutathione (Dnp-SG) and GSSG transport system(s) led us to examine xenobiotic-SG transport from human erythrocytes and into inside-out vesicles (IOV) using N-ethylmaleimide-glutathione conjugate (NEM-SG) as substrate. Efflux of NEM-SG from intact erythrocytes was linear over a period of 4 h, occurred against a concentration gradient, and required energy. No transport of NEM-SG was observed when endogenous ATP was exhausted by preincubation of the erythrocytes for 8 h at 37°C in the absence of glucose. When cellular GSH was partially conjugated with NEM to form 1.5 and 1.0 mM NEM-SG, and the remaining GSH was oxidized with t-butylhydroperoxide to generate 0.2 and 0.4 mM GSSG, respectively, the extrusion of NEM-SG from erythrocytes was not inhibited. The kinetics of NEM-SG transport in intact erythrocytes were monophasic; the Km NEM-SG was 0.62 mM ± 0.24. However, in IOV two components of NEM-SG transport with respect to NEM-SG and ATP were discernible. The low Km for NEM-SG was 5.6 ± 1.51 μM with a Vmax of 7.30 ± 0.69 nmol/mg protein/h and the high Km for NEM-SG was 1.35 ± 0.14 mM with a Vmax of 65.1 ± 3.5 nmol/mg protein h. With respect to ATP, the NEM-SG transport had a low Km of 0.12 ± 0.004 mM and a high Km of 0.52 ± 0.052 mM. Both components of NEM-SG transport were inhibited by fluoride, o-vanadate, p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). However, NEM (1 mM) inhibited only the high Km transport. GSH stimulated the low Km transport 1.7-fold. Both low and high Km components of NEM-SG transport significantly declined when ATP was substituted with CTP, UTP, or GTP. GSSG and Dnp-SG competitively inhibited the low Km NEM-SG transport (Ki = 18.5 ± 2.9 and 1.32 ± 0.16 μM, respectively) whereas the high Km transport was inhibited by Dnp-SG but not by GSSG, These findings suggest that glutathione S-conjugates may be transported out of erythrocytes by both the high and the low Km mechanisms, the latter being shared by GSSG.

Original languageEnglish (US)
Pages (from-to)105-114
Number of pages10
JournalBiochemical Medicine and Metabolic Biology
Volume53
Issue number2
DOIs
StatePublished - Dec 1994

Fingerprint

Ethylmaleimide
Glutathione Disulfide
Erythrocyte Membrane
Glutathione
Adenosine Triphosphate
Erythrocytes
Membranes
Nitrobenzoates
tert-Butylhydroperoxide
Cytidine Triphosphate
Uridine Triphosphate
Vanadates
Xenobiotics
Guanosine Triphosphate
Fluorides
Extrusion
Proteins
Glucose
Kinetics
S-(2,4-dinitrophenyl)glutathione

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry

Cite this

ATP-Dependent Transport of Glutathione-N-Ethylmaleimide Conjugate across Erythrocyte Membrane. / Khanna, P.; Kumari, K.; Ansari, Naseem; Srivastava, Satish.

In: Biochemical Medicine and Metabolic Biology, Vol. 53, No. 2, 12.1994, p. 105-114.

Research output: Contribution to journalArticle

@article{c96d84caf53f4ba6a16ace7d235a2977,
title = "ATP-Dependent Transport of Glutathione-N-Ethylmaleimide Conjugate across Erythrocyte Membrane",
abstract = "Prevailing controversies regarding the identity and nature of S-(2,4-dinitrophenyl) glutathione (Dnp-SG) and GSSG transport system(s) led us to examine xenobiotic-SG transport from human erythrocytes and into inside-out vesicles (IOV) using N-ethylmaleimide-glutathione conjugate (NEM-SG) as substrate. Efflux of NEM-SG from intact erythrocytes was linear over a period of 4 h, occurred against a concentration gradient, and required energy. No transport of NEM-SG was observed when endogenous ATP was exhausted by preincubation of the erythrocytes for 8 h at 37°C in the absence of glucose. When cellular GSH was partially conjugated with NEM to form 1.5 and 1.0 mM NEM-SG, and the remaining GSH was oxidized with t-butylhydroperoxide to generate 0.2 and 0.4 mM GSSG, respectively, the extrusion of NEM-SG from erythrocytes was not inhibited. The kinetics of NEM-SG transport in intact erythrocytes were monophasic; the Km NEM-SG was 0.62 mM ± 0.24. However, in IOV two components of NEM-SG transport with respect to NEM-SG and ATP were discernible. The low Km for NEM-SG was 5.6 ± 1.51 μM with a Vmax of 7.30 ± 0.69 nmol/mg protein/h and the high Km for NEM-SG was 1.35 ± 0.14 mM with a Vmax of 65.1 ± 3.5 nmol/mg protein h. With respect to ATP, the NEM-SG transport had a low Km of 0.12 ± 0.004 mM and a high Km of 0.52 ± 0.052 mM. Both components of NEM-SG transport were inhibited by fluoride, o-vanadate, p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). However, NEM (1 mM) inhibited only the high Km transport. GSH stimulated the low Km transport 1.7-fold. Both low and high Km components of NEM-SG transport significantly declined when ATP was substituted with CTP, UTP, or GTP. GSSG and Dnp-SG competitively inhibited the low Km NEM-SG transport (Ki = 18.5 ± 2.9 and 1.32 ± 0.16 μM, respectively) whereas the high Km transport was inhibited by Dnp-SG but not by GSSG, These findings suggest that glutathione S-conjugates may be transported out of erythrocytes by both the high and the low Km mechanisms, the latter being shared by GSSG.",
author = "P. Khanna and K. Kumari and Naseem Ansari and Satish Srivastava",
year = "1994",
month = "12",
doi = "10.1006/bmmb.1994.1065",
language = "English (US)",
volume = "53",
pages = "105--114",
journal = "Molecular Genetics and Metabolism",
issn = "1096-7192",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - ATP-Dependent Transport of Glutathione-N-Ethylmaleimide Conjugate across Erythrocyte Membrane

AU - Khanna, P.

AU - Kumari, K.

AU - Ansari, Naseem

AU - Srivastava, Satish

PY - 1994/12

Y1 - 1994/12

N2 - Prevailing controversies regarding the identity and nature of S-(2,4-dinitrophenyl) glutathione (Dnp-SG) and GSSG transport system(s) led us to examine xenobiotic-SG transport from human erythrocytes and into inside-out vesicles (IOV) using N-ethylmaleimide-glutathione conjugate (NEM-SG) as substrate. Efflux of NEM-SG from intact erythrocytes was linear over a period of 4 h, occurred against a concentration gradient, and required energy. No transport of NEM-SG was observed when endogenous ATP was exhausted by preincubation of the erythrocytes for 8 h at 37°C in the absence of glucose. When cellular GSH was partially conjugated with NEM to form 1.5 and 1.0 mM NEM-SG, and the remaining GSH was oxidized with t-butylhydroperoxide to generate 0.2 and 0.4 mM GSSG, respectively, the extrusion of NEM-SG from erythrocytes was not inhibited. The kinetics of NEM-SG transport in intact erythrocytes were monophasic; the Km NEM-SG was 0.62 mM ± 0.24. However, in IOV two components of NEM-SG transport with respect to NEM-SG and ATP were discernible. The low Km for NEM-SG was 5.6 ± 1.51 μM with a Vmax of 7.30 ± 0.69 nmol/mg protein/h and the high Km for NEM-SG was 1.35 ± 0.14 mM with a Vmax of 65.1 ± 3.5 nmol/mg protein h. With respect to ATP, the NEM-SG transport had a low Km of 0.12 ± 0.004 mM and a high Km of 0.52 ± 0.052 mM. Both components of NEM-SG transport were inhibited by fluoride, o-vanadate, p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). However, NEM (1 mM) inhibited only the high Km transport. GSH stimulated the low Km transport 1.7-fold. Both low and high Km components of NEM-SG transport significantly declined when ATP was substituted with CTP, UTP, or GTP. GSSG and Dnp-SG competitively inhibited the low Km NEM-SG transport (Ki = 18.5 ± 2.9 and 1.32 ± 0.16 μM, respectively) whereas the high Km transport was inhibited by Dnp-SG but not by GSSG, These findings suggest that glutathione S-conjugates may be transported out of erythrocytes by both the high and the low Km mechanisms, the latter being shared by GSSG.

AB - Prevailing controversies regarding the identity and nature of S-(2,4-dinitrophenyl) glutathione (Dnp-SG) and GSSG transport system(s) led us to examine xenobiotic-SG transport from human erythrocytes and into inside-out vesicles (IOV) using N-ethylmaleimide-glutathione conjugate (NEM-SG) as substrate. Efflux of NEM-SG from intact erythrocytes was linear over a period of 4 h, occurred against a concentration gradient, and required energy. No transport of NEM-SG was observed when endogenous ATP was exhausted by preincubation of the erythrocytes for 8 h at 37°C in the absence of glucose. When cellular GSH was partially conjugated with NEM to form 1.5 and 1.0 mM NEM-SG, and the remaining GSH was oxidized with t-butylhydroperoxide to generate 0.2 and 0.4 mM GSSG, respectively, the extrusion of NEM-SG from erythrocytes was not inhibited. The kinetics of NEM-SG transport in intact erythrocytes were monophasic; the Km NEM-SG was 0.62 mM ± 0.24. However, in IOV two components of NEM-SG transport with respect to NEM-SG and ATP were discernible. The low Km for NEM-SG was 5.6 ± 1.51 μM with a Vmax of 7.30 ± 0.69 nmol/mg protein/h and the high Km for NEM-SG was 1.35 ± 0.14 mM with a Vmax of 65.1 ± 3.5 nmol/mg protein h. With respect to ATP, the NEM-SG transport had a low Km of 0.12 ± 0.004 mM and a high Km of 0.52 ± 0.052 mM. Both components of NEM-SG transport were inhibited by fluoride, o-vanadate, p-hydroxymercuribenzoate and 5,5′-dithiobis(2-nitrobenzoic acid). However, NEM (1 mM) inhibited only the high Km transport. GSH stimulated the low Km transport 1.7-fold. Both low and high Km components of NEM-SG transport significantly declined when ATP was substituted with CTP, UTP, or GTP. GSSG and Dnp-SG competitively inhibited the low Km NEM-SG transport (Ki = 18.5 ± 2.9 and 1.32 ± 0.16 μM, respectively) whereas the high Km transport was inhibited by Dnp-SG but not by GSSG, These findings suggest that glutathione S-conjugates may be transported out of erythrocytes by both the high and the low Km mechanisms, the latter being shared by GSSG.

UR - http://www.scopus.com/inward/record.url?scp=0028556405&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028556405&partnerID=8YFLogxK

U2 - 10.1006/bmmb.1994.1065

DO - 10.1006/bmmb.1994.1065

M3 - Article

C2 - 7710766

AN - SCOPUS:0028556405

VL - 53

SP - 105

EP - 114

JO - Molecular Genetics and Metabolism

JF - Molecular Genetics and Metabolism

SN - 1096-7192

IS - 2

ER -