Attenuated West Nile virus mutant NS1130-132QQA/175A/207A exhibits virus-induced ultrastructural changes and accumulation of protein in the endoplasmic reticulum

Melissa C. Whiteman, Vsevolod Popov, Michael Sherman, Julie Wen, Alan Barrett

Research output: Contribution to journalArticle

6 Scopus citations


We have previously shown that ablation of the three N-linked glycosylation sites in the West Nile virus NS1 protein completely attenuates mouse neuroinvasiveness (≥ 1,000,000 PFU). Here, we compared the replication of the NS1130-132QQA/175A/207A mutant to that of the parental NY99 strain in monkey kidney Vero cells. The results suggest that the mechanism of attenuation is a lack of NS1 glycosylation, which blocks efficient replication, maturation, and NS1 secretion from the endoplasmic reticulum and results in changes to the virus-induced ultrastructure.

Original languageEnglish (US)
Pages (from-to)1474-1478
Number of pages5
JournalJournal of Virology
Issue number2
StatePublished - Jan 1 2015


ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this