Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer

Cihan Kayasandik, Pooran Negi, Fernanda Laezza, Manos Papadakis, Demetrio Labate

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Fluorescence confocal microscopy has become increasingly more important in neuroscience due to its applications in image-based screening and profiling of neurons. Multispectral confocal imaging is useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, current automated image analysis algorithms are not designed to extract single-neuron arbors in images where neurons are not separated, hampering the ability map fluorescence signals at the single cell level. To overcome this limitation, we introduce NeuroTreeTracer - a novel image processing framework aimed at automatically extracting and sorting single-neuron traces in fluorescent images of multicellular neuronal networks. This method applies directional multiscale filters for automated segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal trees in the image by resolving network connectivity even when neurites appear to intersect. By extracting each neuronal tree, NeuroTreetracer enables to automatically quantify the spatial distribution of analytes of interest in the subcellular compartments of individual neurons. This software is released open-source and freely available with the goal to facilitate applications in neuron screening and profiling.

Original languageEnglish (US)
Article number6450
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer'. Together they form a unique fingerprint.

  • Cite this