Abstract
Gut microbes can synthesize multiple neuro-active metabolites. We profiled neuro-active compounds produced by the gut commensal Bacteroides ovatus in vitro and in vivo by LC-MS/MS. We found that B. ovatus generates acetic acid, propionic acid, isobutyric acid, and isovaleric acid. In vitro, B. ovatus consumed tryptophan and glutamate and synthesized the neuro-active compounds glutamine and GABA. Consistent with our LC-MS/MS-based in vitro data, we observed elevated levels of acetic acid, propionic acid, isobutyric acid, and isovaleric acid in the intestines of B. ovatus mono-associated mice compared with germ-free controls. B. ovatus mono-association also increased the concentrations of intestinal GABA and decreased the concentrations of tryptophan and glutamine compared with germ-free controls. Computational network analysis revealed unique links between SCFAs, neuro-active compounds, and colonization status. These results highlight connections between microbial colonization and intestinal neurotransmitter concentrations, suggesting that B. ovatus selectively influences the presence of intestinal neurotransmitters.
Original language | English (US) |
---|---|
Article number | 104158 |
Journal | iScience |
Volume | 25 |
Issue number | 5 |
DOIs | |
State | Published - May 20 2022 |
Externally published | Yes |
Keywords
- Microbiology
- Microbiome
- Neuroscience
ASJC Scopus subject areas
- General