Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase

Csaba Szabo, Garry J. Southan, Christoph Thiemermann

Research output: Contribution to journalArticle

417 Citations (Scopus)

Abstract

Enhanced formation of nitric oxide (NO) by both the constitutive and the inducible isoforms of NO synthase (NOS) has been implicated in the pathophysiology of a variety of diseases, including circulatory shock. Non- isoform-selective inhibition of NO formation, however, may lead to side effects by inhibiting the constitutive isoform of NOS and, thus, the various physiological actions of NO. S-Methylisothiourea sulfate (SMT) is at least 10- to 30-fold more potent as an inhibitor of inducible NOS (iNOS) in immunostimulated cultured macrophages (EC50, 6 μM) and vascular smooth muscle cells (EC50, 2μM) than N(G)-methyl-L-arginine (MeArg) or any other NOS inhibitor yet known. The effect of SMT on iNOS activity can be reversed by excess L-arginine in a concentration-dependent manner. SMT (up to 1 mM) does not inhibit the activity of xanthine oxidase, diaphorase, lactate dehydrogenase, mono-amine oxidase, catalase, cytochrome P450, or superoxide dismutase. SMT is equipotent with MeArg in inhibiting the endothelial, constitutive isoform of NOS in vitro and causes increases in blood pressure similar to those produced by MeArg in normal rats. SMT, however, dose- dependently reverses (0.01-3 mg/kg) the hypotension and the vascular hyporeactivity to vasoconstrictor agents caused by endotoxin [bacterial lipopolysaccharide (LPS), 10 mg/kg, i.v.] in anesthetized rats. Moreover, therapeutic administration of SMT (S mg/kg, i.p., given 2 hr after LPS, 10 mg/kg, i.p.) attenuates the rises in plasma alanine and aspartate aminotransferases, bilirubin, and creatinine and also prevents hypocalcaemia when measured 6 hr after administration of LPS. SMT (1 mg/kg, i.p.) improves 24-hr survival of mice treated with a high dose of LPS (60 mg/kg, i.p.). Thus, SMT is a potent and selective inhibitor of iNOS and exerts beneficial effects in rodent models of septic shock. SMT, therefore, may have considerable value in the therapy of circulatory shock of various etiologies and other pathophysiological conditions associated with induction of iNOS.

Original languageEnglish (US)
Pages (from-to)12472-12476
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume91
Issue number26
DOIs
StatePublished - Dec 20 1994
Externally publishedYes

Fingerprint

Nitric Oxide Synthase Type II
Septic Shock
Rodentia
Nitric Oxide Synthase
Lipopolysaccharides
Arginine
Protein Isoforms
Nitric Oxide
Convulsive Therapy
Hairless Mouse
S-methylisothiopseudouronium
Hypocalcemia
Xanthine Oxidase
Vasoconstrictor Agents
Aspartate Aminotransferases
Alanine Transaminase
Vascular Smooth Muscle
L-Lactate Dehydrogenase
Bilirubin
Endotoxins

Keywords

  • arthritis
  • cancer therapy
  • diabetes
  • endotoxin
  • inflammation

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{ed5d3dcf39634508999d2f4352bb11df,
title = "Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase",
abstract = "Enhanced formation of nitric oxide (NO) by both the constitutive and the inducible isoforms of NO synthase (NOS) has been implicated in the pathophysiology of a variety of diseases, including circulatory shock. Non- isoform-selective inhibition of NO formation, however, may lead to side effects by inhibiting the constitutive isoform of NOS and, thus, the various physiological actions of NO. S-Methylisothiourea sulfate (SMT) is at least 10- to 30-fold more potent as an inhibitor of inducible NOS (iNOS) in immunostimulated cultured macrophages (EC50, 6 μM) and vascular smooth muscle cells (EC50, 2μM) than N(G)-methyl-L-arginine (MeArg) or any other NOS inhibitor yet known. The effect of SMT on iNOS activity can be reversed by excess L-arginine in a concentration-dependent manner. SMT (up to 1 mM) does not inhibit the activity of xanthine oxidase, diaphorase, lactate dehydrogenase, mono-amine oxidase, catalase, cytochrome P450, or superoxide dismutase. SMT is equipotent with MeArg in inhibiting the endothelial, constitutive isoform of NOS in vitro and causes increases in blood pressure similar to those produced by MeArg in normal rats. SMT, however, dose- dependently reverses (0.01-3 mg/kg) the hypotension and the vascular hyporeactivity to vasoconstrictor agents caused by endotoxin [bacterial lipopolysaccharide (LPS), 10 mg/kg, i.v.] in anesthetized rats. Moreover, therapeutic administration of SMT (S mg/kg, i.p., given 2 hr after LPS, 10 mg/kg, i.p.) attenuates the rises in plasma alanine and aspartate aminotransferases, bilirubin, and creatinine and also prevents hypocalcaemia when measured 6 hr after administration of LPS. SMT (1 mg/kg, i.p.) improves 24-hr survival of mice treated with a high dose of LPS (60 mg/kg, i.p.). Thus, SMT is a potent and selective inhibitor of iNOS and exerts beneficial effects in rodent models of septic shock. SMT, therefore, may have considerable value in the therapy of circulatory shock of various etiologies and other pathophysiological conditions associated with induction of iNOS.",
keywords = "arthritis, cancer therapy, diabetes, endotoxin, inflammation",
author = "Csaba Szabo and Southan, {Garry J.} and Christoph Thiemermann",
year = "1994",
month = "12",
day = "20",
doi = "10.1073/pnas.91.26.12472",
language = "English (US)",
volume = "91",
pages = "12472--12476",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "26",

}

TY - JOUR

T1 - Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase

AU - Szabo, Csaba

AU - Southan, Garry J.

AU - Thiemermann, Christoph

PY - 1994/12/20

Y1 - 1994/12/20

N2 - Enhanced formation of nitric oxide (NO) by both the constitutive and the inducible isoforms of NO synthase (NOS) has been implicated in the pathophysiology of a variety of diseases, including circulatory shock. Non- isoform-selective inhibition of NO formation, however, may lead to side effects by inhibiting the constitutive isoform of NOS and, thus, the various physiological actions of NO. S-Methylisothiourea sulfate (SMT) is at least 10- to 30-fold more potent as an inhibitor of inducible NOS (iNOS) in immunostimulated cultured macrophages (EC50, 6 μM) and vascular smooth muscle cells (EC50, 2μM) than N(G)-methyl-L-arginine (MeArg) or any other NOS inhibitor yet known. The effect of SMT on iNOS activity can be reversed by excess L-arginine in a concentration-dependent manner. SMT (up to 1 mM) does not inhibit the activity of xanthine oxidase, diaphorase, lactate dehydrogenase, mono-amine oxidase, catalase, cytochrome P450, or superoxide dismutase. SMT is equipotent with MeArg in inhibiting the endothelial, constitutive isoform of NOS in vitro and causes increases in blood pressure similar to those produced by MeArg in normal rats. SMT, however, dose- dependently reverses (0.01-3 mg/kg) the hypotension and the vascular hyporeactivity to vasoconstrictor agents caused by endotoxin [bacterial lipopolysaccharide (LPS), 10 mg/kg, i.v.] in anesthetized rats. Moreover, therapeutic administration of SMT (S mg/kg, i.p., given 2 hr after LPS, 10 mg/kg, i.p.) attenuates the rises in plasma alanine and aspartate aminotransferases, bilirubin, and creatinine and also prevents hypocalcaemia when measured 6 hr after administration of LPS. SMT (1 mg/kg, i.p.) improves 24-hr survival of mice treated with a high dose of LPS (60 mg/kg, i.p.). Thus, SMT is a potent and selective inhibitor of iNOS and exerts beneficial effects in rodent models of septic shock. SMT, therefore, may have considerable value in the therapy of circulatory shock of various etiologies and other pathophysiological conditions associated with induction of iNOS.

AB - Enhanced formation of nitric oxide (NO) by both the constitutive and the inducible isoforms of NO synthase (NOS) has been implicated in the pathophysiology of a variety of diseases, including circulatory shock. Non- isoform-selective inhibition of NO formation, however, may lead to side effects by inhibiting the constitutive isoform of NOS and, thus, the various physiological actions of NO. S-Methylisothiourea sulfate (SMT) is at least 10- to 30-fold more potent as an inhibitor of inducible NOS (iNOS) in immunostimulated cultured macrophages (EC50, 6 μM) and vascular smooth muscle cells (EC50, 2μM) than N(G)-methyl-L-arginine (MeArg) or any other NOS inhibitor yet known. The effect of SMT on iNOS activity can be reversed by excess L-arginine in a concentration-dependent manner. SMT (up to 1 mM) does not inhibit the activity of xanthine oxidase, diaphorase, lactate dehydrogenase, mono-amine oxidase, catalase, cytochrome P450, or superoxide dismutase. SMT is equipotent with MeArg in inhibiting the endothelial, constitutive isoform of NOS in vitro and causes increases in blood pressure similar to those produced by MeArg in normal rats. SMT, however, dose- dependently reverses (0.01-3 mg/kg) the hypotension and the vascular hyporeactivity to vasoconstrictor agents caused by endotoxin [bacterial lipopolysaccharide (LPS), 10 mg/kg, i.v.] in anesthetized rats. Moreover, therapeutic administration of SMT (S mg/kg, i.p., given 2 hr after LPS, 10 mg/kg, i.p.) attenuates the rises in plasma alanine and aspartate aminotransferases, bilirubin, and creatinine and also prevents hypocalcaemia when measured 6 hr after administration of LPS. SMT (1 mg/kg, i.p.) improves 24-hr survival of mice treated with a high dose of LPS (60 mg/kg, i.p.). Thus, SMT is a potent and selective inhibitor of iNOS and exerts beneficial effects in rodent models of septic shock. SMT, therefore, may have considerable value in the therapy of circulatory shock of various etiologies and other pathophysiological conditions associated with induction of iNOS.

KW - arthritis

KW - cancer therapy

KW - diabetes

KW - endotoxin

KW - inflammation

UR - http://www.scopus.com/inward/record.url?scp=0028577721&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028577721&partnerID=8YFLogxK

U2 - 10.1073/pnas.91.26.12472

DO - 10.1073/pnas.91.26.12472

M3 - Article

VL - 91

SP - 12472

EP - 12476

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 26

ER -