TY - JOUR
T1 - Biaryl analogues of conformationally constrained tricyclic tropanes as potent and selective norepinephrine reuptake inhibitors
T2 - Synthesis and evaluation of their uptake inhibition at monoamine transporter sites
AU - Zhou, Jia
AU - Zhang, Ao
AU - Kläss, Thomas
AU - Johnson, Kenneth M.
AU - Wang, Cheng Z.
AU - Ye, Yan Ping
AU - Kozikowski, Alan P.
PY - 2003/5/8
Y1 - 2003/5/8
N2 - A series of novel conformationally constrained tricyclic tropane derivatives containing a biaryl moiety, (Z)-9-(biarylylmethylene)-7-azatricyclo[4.3.1.03,7]decanes, were synthesized and evaluated for their ability to inhibit reuptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) by the DA, 5-HT, and NE transporters. Most of the compounds containing a methoxycarbonyl substituent at C-10 exhibit moderate to high inhibitory activity at the NET but lower activity at the DAT and SERT. Among these new compounds, some potent, NET-selective ligands were identified. The p-methoxy derivative 11a has a Ki value of 39 nM for uptake inhibition at the NET and moderate to high selectivity over the SERT (100-fold) and the DAT (20-fold). Compound 11f exhibits a remarkable potency (Ki = 9.7 nM) at the NET and a 25-fold selectivity over both the SERT and the DAT. Analogue 23 containing a thiophene ring as a bioisosteric replacement of the phenyl ring Ar1 displays a high activity (Ki = 10.3 nM) for the NET and similar selectivity over the SERT (50-fold) and the DAT (37-fold). The selectivity profile of biaryl analogues differs from that of the monoaryl series, as most members of that series display excellent potency at and selectivity for the SERT (J. Med. Chem. 2002, 45, 1930). This finding suggests that the different shape and size of the lipophilic recognition pocket that encompasses the aryl ring(s) of these tropanes are major determinants of a ligand's transporter activity at either the NET or the SERT. Some of the compounds in this series may also be valuable in sorting out the contribution of the individual transporters to cocaine's reinforcing properties.
AB - A series of novel conformationally constrained tricyclic tropane derivatives containing a biaryl moiety, (Z)-9-(biarylylmethylene)-7-azatricyclo[4.3.1.03,7]decanes, were synthesized and evaluated for their ability to inhibit reuptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) by the DA, 5-HT, and NE transporters. Most of the compounds containing a methoxycarbonyl substituent at C-10 exhibit moderate to high inhibitory activity at the NET but lower activity at the DAT and SERT. Among these new compounds, some potent, NET-selective ligands were identified. The p-methoxy derivative 11a has a Ki value of 39 nM for uptake inhibition at the NET and moderate to high selectivity over the SERT (100-fold) and the DAT (20-fold). Compound 11f exhibits a remarkable potency (Ki = 9.7 nM) at the NET and a 25-fold selectivity over both the SERT and the DAT. Analogue 23 containing a thiophene ring as a bioisosteric replacement of the phenyl ring Ar1 displays a high activity (Ki = 10.3 nM) for the NET and similar selectivity over the SERT (50-fold) and the DAT (37-fold). The selectivity profile of biaryl analogues differs from that of the monoaryl series, as most members of that series display excellent potency at and selectivity for the SERT (J. Med. Chem. 2002, 45, 1930). This finding suggests that the different shape and size of the lipophilic recognition pocket that encompasses the aryl ring(s) of these tropanes are major determinants of a ligand's transporter activity at either the NET or the SERT. Some of the compounds in this series may also be valuable in sorting out the contribution of the individual transporters to cocaine's reinforcing properties.
UR - http://www.scopus.com/inward/record.url?scp=0038077563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038077563&partnerID=8YFLogxK
U2 - 10.1021/jm020596w
DO - 10.1021/jm020596w
M3 - Article
C2 - 12723962
AN - SCOPUS:0038077563
SN - 0022-2623
VL - 46
SP - 1997
EP - 2007
JO - Journal of medicinal chemistry
JF - Journal of medicinal chemistry
IS - 10
ER -