Biomimetic proteolipid vesicles for targeting inflamed tissues

R. Molinaro, C. Corbo, J. O. Martinez, F. Taraballi, M. Evangelopoulos, S. Minardi, I. K. Yazdi, P. Zhao, E. De Rosa, M. B. Sherman, A. De Vita, N. E. Toledano Furman, X. Wang, A. Parodi, E. Tasciotti

Research output: Contribution to journalArticle

115 Scopus citations

Abstract

A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles - which we refer to as leukosomes - retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.

Original languageEnglish (US)
Pages (from-to)1037-1046
Number of pages10
JournalNature Materials
Volume15
Issue number9
DOIs
StatePublished - Sep 1 2016

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Molinaro, R., Corbo, C., Martinez, J. O., Taraballi, F., Evangelopoulos, M., Minardi, S., Yazdi, I. K., Zhao, P., De Rosa, E., Sherman, M. B., De Vita, A., Toledano Furman, N. E., Wang, X., Parodi, A., & Tasciotti, E. (2016). Biomimetic proteolipid vesicles for targeting inflamed tissues. Nature Materials, 15(9), 1037-1046. https://doi.org/10.1038/nmat4644