Cardiopulmonary bypass impairs vascular endothelial relaxation

Effects of gaseous microemboli in dogs

A. E. Feerick, W. E. Johnston, O. Steinsland, C. Lin, Y. Wang, T. Uchida, Donald Prough

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Gaseous microemboli during hypothermic cardiopulmonary bypass (CPB) may injure the vascular endothelium and interfere with intrinsic vasomotion. We tested whether gaseous microemboli reduced the vasodilator response to acetylcholine (ACh, 10-9-10-6 M) and potentiated the vasoconstrictor response to norepinephrine (NE, 3 x 10-8-10-4 M). Arteries from 18 dogs were excised before and after 120 min 28°C CPB using membrane (n = 9) and bubble (n = 9) oxygenators to produce microemboli, which were quantitated by Doppler. Five nonbypassed dogs were controls. In isolated vessel rings, the 50% effective dose (ED50) values for ACh (10-8 M) and NE (10-7 M) responses were calculated. Mean microemboli count per minute was 0 ± 0 in the control group, 1.0 ± 0.4 in the membrane group (P < 0.05 vs. controls), and 46.9 ± 8.4 in the bubble group (P < 0.05 vs. control and membrane groups). ACh ED50 values did not change in controls but increased in the membrane group from 4.01 ± 1.52 to 5.66 ± 1.39 (P < 0.05) and in the bubble group from 2.32 ± 0.56 to 7.21 ± 1.90 (P < 0.05). The change in ED50 was greater for bubble than for membrane animals (P < 0.05) but did not correlate with microemboli number (bubble: r = 0.392, P = 0.297; membrane: r = 0.058, P = 0.802). NE responses were similar in all groups. Hypothermic CPB reduces ACh-induced dilation of the canine femoral artery independent of the incidence of gaseous microemboli. The vasoconstrictor response to NE is preserved after CPB regardless of whether membrane or bubble oxygenators are used.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume267
Issue number3 36-3
StatePublished - 1994

Fingerprint

Cardiopulmonary Bypass
Blood Vessels
Dogs
Membranes
Oxygenators
Vasoconstrictor Agents
Control Groups
Vascular Endothelium
Femoral Artery
Vasodilator Agents
Acetylcholine
Canidae
Dilatation
Norepinephrine
Arteries
Incidence

Keywords

  • endothelium-derived relaxant factor
  • vasospasm

ASJC Scopus subject areas

  • Physiology

Cite this

Cardiopulmonary bypass impairs vascular endothelial relaxation : Effects of gaseous microemboli in dogs. / Feerick, A. E.; Johnston, W. E.; Steinsland, O.; Lin, C.; Wang, Y.; Uchida, T.; Prough, Donald.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 267, No. 3 36-3, 1994.

Research output: Contribution to journalArticle

@article{0fac26cd3d3744bf9a8ef240ba779fcd,
title = "Cardiopulmonary bypass impairs vascular endothelial relaxation: Effects of gaseous microemboli in dogs",
abstract = "Gaseous microemboli during hypothermic cardiopulmonary bypass (CPB) may injure the vascular endothelium and interfere with intrinsic vasomotion. We tested whether gaseous microemboli reduced the vasodilator response to acetylcholine (ACh, 10-9-10-6 M) and potentiated the vasoconstrictor response to norepinephrine (NE, 3 x 10-8-10-4 M). Arteries from 18 dogs were excised before and after 120 min 28°C CPB using membrane (n = 9) and bubble (n = 9) oxygenators to produce microemboli, which were quantitated by Doppler. Five nonbypassed dogs were controls. In isolated vessel rings, the 50{\%} effective dose (ED50) values for ACh (10-8 M) and NE (10-7 M) responses were calculated. Mean microemboli count per minute was 0 ± 0 in the control group, 1.0 ± 0.4 in the membrane group (P < 0.05 vs. controls), and 46.9 ± 8.4 in the bubble group (P < 0.05 vs. control and membrane groups). ACh ED50 values did not change in controls but increased in the membrane group from 4.01 ± 1.52 to 5.66 ± 1.39 (P < 0.05) and in the bubble group from 2.32 ± 0.56 to 7.21 ± 1.90 (P < 0.05). The change in ED50 was greater for bubble than for membrane animals (P < 0.05) but did not correlate with microemboli number (bubble: r = 0.392, P = 0.297; membrane: r = 0.058, P = 0.802). NE responses were similar in all groups. Hypothermic CPB reduces ACh-induced dilation of the canine femoral artery independent of the incidence of gaseous microemboli. The vasoconstrictor response to NE is preserved after CPB regardless of whether membrane or bubble oxygenators are used.",
keywords = "endothelium-derived relaxant factor, vasospasm",
author = "Feerick, {A. E.} and Johnston, {W. E.} and O. Steinsland and C. Lin and Y. Wang and T. Uchida and Donald Prough",
year = "1994",
language = "English (US)",
volume = "267",
journal = "American Journal of Physiology - Endocrinology and Metabolism",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "3 36-3",

}

TY - JOUR

T1 - Cardiopulmonary bypass impairs vascular endothelial relaxation

T2 - Effects of gaseous microemboli in dogs

AU - Feerick, A. E.

AU - Johnston, W. E.

AU - Steinsland, O.

AU - Lin, C.

AU - Wang, Y.

AU - Uchida, T.

AU - Prough, Donald

PY - 1994

Y1 - 1994

N2 - Gaseous microemboli during hypothermic cardiopulmonary bypass (CPB) may injure the vascular endothelium and interfere with intrinsic vasomotion. We tested whether gaseous microemboli reduced the vasodilator response to acetylcholine (ACh, 10-9-10-6 M) and potentiated the vasoconstrictor response to norepinephrine (NE, 3 x 10-8-10-4 M). Arteries from 18 dogs were excised before and after 120 min 28°C CPB using membrane (n = 9) and bubble (n = 9) oxygenators to produce microemboli, which were quantitated by Doppler. Five nonbypassed dogs were controls. In isolated vessel rings, the 50% effective dose (ED50) values for ACh (10-8 M) and NE (10-7 M) responses were calculated. Mean microemboli count per minute was 0 ± 0 in the control group, 1.0 ± 0.4 in the membrane group (P < 0.05 vs. controls), and 46.9 ± 8.4 in the bubble group (P < 0.05 vs. control and membrane groups). ACh ED50 values did not change in controls but increased in the membrane group from 4.01 ± 1.52 to 5.66 ± 1.39 (P < 0.05) and in the bubble group from 2.32 ± 0.56 to 7.21 ± 1.90 (P < 0.05). The change in ED50 was greater for bubble than for membrane animals (P < 0.05) but did not correlate with microemboli number (bubble: r = 0.392, P = 0.297; membrane: r = 0.058, P = 0.802). NE responses were similar in all groups. Hypothermic CPB reduces ACh-induced dilation of the canine femoral artery independent of the incidence of gaseous microemboli. The vasoconstrictor response to NE is preserved after CPB regardless of whether membrane or bubble oxygenators are used.

AB - Gaseous microemboli during hypothermic cardiopulmonary bypass (CPB) may injure the vascular endothelium and interfere with intrinsic vasomotion. We tested whether gaseous microemboli reduced the vasodilator response to acetylcholine (ACh, 10-9-10-6 M) and potentiated the vasoconstrictor response to norepinephrine (NE, 3 x 10-8-10-4 M). Arteries from 18 dogs were excised before and after 120 min 28°C CPB using membrane (n = 9) and bubble (n = 9) oxygenators to produce microemboli, which were quantitated by Doppler. Five nonbypassed dogs were controls. In isolated vessel rings, the 50% effective dose (ED50) values for ACh (10-8 M) and NE (10-7 M) responses were calculated. Mean microemboli count per minute was 0 ± 0 in the control group, 1.0 ± 0.4 in the membrane group (P < 0.05 vs. controls), and 46.9 ± 8.4 in the bubble group (P < 0.05 vs. control and membrane groups). ACh ED50 values did not change in controls but increased in the membrane group from 4.01 ± 1.52 to 5.66 ± 1.39 (P < 0.05) and in the bubble group from 2.32 ± 0.56 to 7.21 ± 1.90 (P < 0.05). The change in ED50 was greater for bubble than for membrane animals (P < 0.05) but did not correlate with microemboli number (bubble: r = 0.392, P = 0.297; membrane: r = 0.058, P = 0.802). NE responses were similar in all groups. Hypothermic CPB reduces ACh-induced dilation of the canine femoral artery independent of the incidence of gaseous microemboli. The vasoconstrictor response to NE is preserved after CPB regardless of whether membrane or bubble oxygenators are used.

KW - endothelium-derived relaxant factor

KW - vasospasm

UR - http://www.scopus.com/inward/record.url?scp=0027941224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027941224&partnerID=8YFLogxK

M3 - Article

VL - 267

JO - American Journal of Physiology - Endocrinology and Metabolism

JF - American Journal of Physiology - Endocrinology and Metabolism

SN - 0193-1849

IS - 3 36-3

ER -