CD4+ CD25+ Foxp3- T-regulatory cells produce both gamma interferon and interleukin-10 during acute severe murine spotted fever rickettsiosis

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Spotted fever group rickettsiae cause life-threatening human infections worldwide. Until now, the immune regulatory mechanisms involved in fatal rickettsial infection have been unknown. C3H/HeN mice infected with 3 × 105 PFU of Rickettsia conorii developed an acute progressive disease, and all mice succumbed to this infection. A sublethal infection induced protective immunity, and mice survived. Compared to splenic T cells from sublethally infected mice, splenic T cells from lethally infected mice produced significantly lower levels of interleukin-2 (IL-2) and gamma interferon (IFN-γ) and a higher level of IL-10, but not of IL-4 or transforming growth factor β, and there was markedly suppressed CD4+ T-cell proliferation in response to antigen-specific stimulation with R. conorii. Furthermore, lethal infection induced significant expansion of CD4+ CD25+ Foxp3- T cells in infected organs compared to the levels in naïve and sublethally infected mice. In a lethal infection, splenic CD4+ CD25+ Foxp3- T cells, which were CTLA-4high T-bet+ and secreted both IFN-γ and IL-10, suppressed the proliferation of and IL-2 production by splenic CD4+ CD25- Foxp3- T cells in vitro. Interestingly, depletion of CD25+ T cells in vivo did not change the disease progression, but it increased the bacterial load in the lung and liver, significantly reduced the number of IFN-γ-producing Th1 cells in the spleen, and increased the serum levels of IFN-γ. These results suggested that CD4+ CD25 + T cells generated in acute murine spotted fever rickettsiosis are Th1-cell-related adaptive T-regulatory cells, which substantially contribute to suppressing the systemic immune response, possibly by a mechanism involving IL-10 and/or cytotoxic T-lymphocyte antigen 4.

Original languageEnglish (US)
Pages (from-to)3838-3849
Number of pages12
JournalInfection and Immunity
Volume77
Issue number9
DOIs
StatePublished - Sep 2009

Fingerprint

Regulatory T-Lymphocytes
Interleukin-10
Interferon-gamma
Fever
T-Lymphocytes
Rickettsia conorii
Infection
Th1 Cells
Interleukin-2
CTLA-4 Antigen
Rickettsia
Inbred C3H Mouse
Bacterial Load
Transforming Growth Factors
Acute Disease
Interleukin-4
Disease Progression
Immunity
Spleen
Cell Proliferation

ASJC Scopus subject areas

  • Immunology
  • Microbiology
  • Parasitology
  • Infectious Diseases

Cite this

@article{41ff5f0ae5454ae2863c01a9e597185a,
title = "CD4+ CD25+ Foxp3- T-regulatory cells produce both gamma interferon and interleukin-10 during acute severe murine spotted fever rickettsiosis",
abstract = "Spotted fever group rickettsiae cause life-threatening human infections worldwide. Until now, the immune regulatory mechanisms involved in fatal rickettsial infection have been unknown. C3H/HeN mice infected with 3 × 105 PFU of Rickettsia conorii developed an acute progressive disease, and all mice succumbed to this infection. A sublethal infection induced protective immunity, and mice survived. Compared to splenic T cells from sublethally infected mice, splenic T cells from lethally infected mice produced significantly lower levels of interleukin-2 (IL-2) and gamma interferon (IFN-γ) and a higher level of IL-10, but not of IL-4 or transforming growth factor β, and there was markedly suppressed CD4+ T-cell proliferation in response to antigen-specific stimulation with R. conorii. Furthermore, lethal infection induced significant expansion of CD4+ CD25+ Foxp3- T cells in infected organs compared to the levels in na{\"i}ve and sublethally infected mice. In a lethal infection, splenic CD4+ CD25+ Foxp3- T cells, which were CTLA-4high T-bet+ and secreted both IFN-γ and IL-10, suppressed the proliferation of and IL-2 production by splenic CD4+ CD25- Foxp3- T cells in vitro. Interestingly, depletion of CD25+ T cells in vivo did not change the disease progression, but it increased the bacterial load in the lung and liver, significantly reduced the number of IFN-γ-producing Th1 cells in the spleen, and increased the serum levels of IFN-γ. These results suggested that CD4+ CD25 + T cells generated in acute murine spotted fever rickettsiosis are Th1-cell-related adaptive T-regulatory cells, which substantially contribute to suppressing the systemic immune response, possibly by a mechanism involving IL-10 and/or cytotoxic T-lymphocyte antigen 4.",
author = "Rong Fang and Nahed Ismail and Thomas Shelite and David Walker",
year = "2009",
month = "9",
doi = "10.1128/IAI.00349-09",
language = "English (US)",
volume = "77",
pages = "3838--3849",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "9",

}

TY - JOUR

T1 - CD4+ CD25+ Foxp3- T-regulatory cells produce both gamma interferon and interleukin-10 during acute severe murine spotted fever rickettsiosis

AU - Fang, Rong

AU - Ismail, Nahed

AU - Shelite, Thomas

AU - Walker, David

PY - 2009/9

Y1 - 2009/9

N2 - Spotted fever group rickettsiae cause life-threatening human infections worldwide. Until now, the immune regulatory mechanisms involved in fatal rickettsial infection have been unknown. C3H/HeN mice infected with 3 × 105 PFU of Rickettsia conorii developed an acute progressive disease, and all mice succumbed to this infection. A sublethal infection induced protective immunity, and mice survived. Compared to splenic T cells from sublethally infected mice, splenic T cells from lethally infected mice produced significantly lower levels of interleukin-2 (IL-2) and gamma interferon (IFN-γ) and a higher level of IL-10, but not of IL-4 or transforming growth factor β, and there was markedly suppressed CD4+ T-cell proliferation in response to antigen-specific stimulation with R. conorii. Furthermore, lethal infection induced significant expansion of CD4+ CD25+ Foxp3- T cells in infected organs compared to the levels in naïve and sublethally infected mice. In a lethal infection, splenic CD4+ CD25+ Foxp3- T cells, which were CTLA-4high T-bet+ and secreted both IFN-γ and IL-10, suppressed the proliferation of and IL-2 production by splenic CD4+ CD25- Foxp3- T cells in vitro. Interestingly, depletion of CD25+ T cells in vivo did not change the disease progression, but it increased the bacterial load in the lung and liver, significantly reduced the number of IFN-γ-producing Th1 cells in the spleen, and increased the serum levels of IFN-γ. These results suggested that CD4+ CD25 + T cells generated in acute murine spotted fever rickettsiosis are Th1-cell-related adaptive T-regulatory cells, which substantially contribute to suppressing the systemic immune response, possibly by a mechanism involving IL-10 and/or cytotoxic T-lymphocyte antigen 4.

AB - Spotted fever group rickettsiae cause life-threatening human infections worldwide. Until now, the immune regulatory mechanisms involved in fatal rickettsial infection have been unknown. C3H/HeN mice infected with 3 × 105 PFU of Rickettsia conorii developed an acute progressive disease, and all mice succumbed to this infection. A sublethal infection induced protective immunity, and mice survived. Compared to splenic T cells from sublethally infected mice, splenic T cells from lethally infected mice produced significantly lower levels of interleukin-2 (IL-2) and gamma interferon (IFN-γ) and a higher level of IL-10, but not of IL-4 or transforming growth factor β, and there was markedly suppressed CD4+ T-cell proliferation in response to antigen-specific stimulation with R. conorii. Furthermore, lethal infection induced significant expansion of CD4+ CD25+ Foxp3- T cells in infected organs compared to the levels in naïve and sublethally infected mice. In a lethal infection, splenic CD4+ CD25+ Foxp3- T cells, which were CTLA-4high T-bet+ and secreted both IFN-γ and IL-10, suppressed the proliferation of and IL-2 production by splenic CD4+ CD25- Foxp3- T cells in vitro. Interestingly, depletion of CD25+ T cells in vivo did not change the disease progression, but it increased the bacterial load in the lung and liver, significantly reduced the number of IFN-γ-producing Th1 cells in the spleen, and increased the serum levels of IFN-γ. These results suggested that CD4+ CD25 + T cells generated in acute murine spotted fever rickettsiosis are Th1-cell-related adaptive T-regulatory cells, which substantially contribute to suppressing the systemic immune response, possibly by a mechanism involving IL-10 and/or cytotoxic T-lymphocyte antigen 4.

UR - http://www.scopus.com/inward/record.url?scp=69049101186&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=69049101186&partnerID=8YFLogxK

U2 - 10.1128/IAI.00349-09

DO - 10.1128/IAI.00349-09

M3 - Article

C2 - 19564386

AN - SCOPUS:69049101186

VL - 77

SP - 3838

EP - 3849

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 9

ER -