TY - JOUR
T1 - CD4+ T cell-dependent macrophage activation modulates sustained ps exposure on intracellular amastigotes of leishmania amazonensis
AU - Wanderley, Joao Luiz Mendes
AU - Deolindo, Poliana
AU - Carlsen, Eric
AU - Portugal, Arieli Bernardo
AU - DaMatta, Renato Augusto
AU - Barcinski, Marcello Andre
AU - Soong, Lynn
N1 - Publisher Copyright:
© 2019 Wanderley, Deolindo, Carlsen, Portugal, DaMatta, Barcinski and Soong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Leishmania amazonensis amastigotes can make use of surface-exposed phosphatidylserine (PS) molecules to promote infection and non-classical activation of macrophages (MΦ), leading to uncontrolled intracellular proliferation of the parasites. This mechanism was quoted as apoptotic mimicry. Moreover, the amount of PS molecules exposed on the surface of amastigotes correlates with the susceptibility of the host. In this study, we tested whether host cellular responses influence PS expression on intracellular amastigotes. We found that the level of PS exposure on intracellular amastigotes was modulated by CD4+ T cell and MΦ activation status in vitro and in vivo. L. amazonensis infection generated a Th1/Th2-mixed cytokine profile, providing the optimal MΦ stimulation that favored PS exposure on intracellular amastigotes. Maintenance of PS exposed on the parasite was dependent on low, but sustained, levels of nitric oxide and polyamine production. Amastigotes obtained from lymphopenic nude mice did not expose PS on their surface, and adoptive transfer of CD4+ T cells reversed this phenotype. In addition, histopathological analysis of mice treated with anti-PS antibodies showed increased inflammation and similarities to nude mouse lesions. Collectively, our data confirm the role of pathogenic CD4+ T cells for disease progression and point to PS as a critical parasite strategy to subvert host immune responses.
AB - Leishmania amazonensis amastigotes can make use of surface-exposed phosphatidylserine (PS) molecules to promote infection and non-classical activation of macrophages (MΦ), leading to uncontrolled intracellular proliferation of the parasites. This mechanism was quoted as apoptotic mimicry. Moreover, the amount of PS molecules exposed on the surface of amastigotes correlates with the susceptibility of the host. In this study, we tested whether host cellular responses influence PS expression on intracellular amastigotes. We found that the level of PS exposure on intracellular amastigotes was modulated by CD4+ T cell and MΦ activation status in vitro and in vivo. L. amazonensis infection generated a Th1/Th2-mixed cytokine profile, providing the optimal MΦ stimulation that favored PS exposure on intracellular amastigotes. Maintenance of PS exposed on the parasite was dependent on low, but sustained, levels of nitric oxide and polyamine production. Amastigotes obtained from lymphopenic nude mice did not expose PS on their surface, and adoptive transfer of CD4+ T cells reversed this phenotype. In addition, histopathological analysis of mice treated with anti-PS antibodies showed increased inflammation and similarities to nude mouse lesions. Collectively, our data confirm the role of pathogenic CD4+ T cells for disease progression and point to PS as a critical parasite strategy to subvert host immune responses.
KW - Amastigote
KW - Immune evasion
KW - Macrophage
KW - Parasitophorous vacuole
KW - Phosphatidylserine
KW - T cell
UR - http://www.scopus.com/inward/record.url?scp=85065418712&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065418712&partnerID=8YFLogxK
U2 - 10.3389/fcimb.2019.00105
DO - 10.3389/fcimb.2019.00105
M3 - Article
C2 - 31032234
AN - SCOPUS:85065418712
SN - 2235-2988
VL - 9
JO - Frontiers in Cellular and Infection Microbiology
JF - Frontiers in Cellular and Infection Microbiology
IS - APR
M1 - 105
ER -