Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic 3',5'-guanosine monophosphate

G. Lonart, K. M. Johnson

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

The mechanisms by which two nitrogen monoxide (NO) generators, hydroxylamine and S-nitroso-L-cysteine (NO-CYS), induce hippocampal [3H]norepinephrine ([3H]NE) release was investigated. Neither hydroxylamine- nor NO-CYS-induced release was affected by the guanylate cyclase inhibitors, methylene blue or LY 83,583. The effect of hydroxylamine was completely dependent on extracellular Ca++ and reduced by 40% in the presence of ω-conotoxin GVIA, an N-type Ca++channel antagonist; however it was unaffected by Ni++, nifedipine, caffeine or thapsigargin. The stimulatory effect of hydroxylamine on hippocampal cyclic GMP formation was not significantly affected by removal of extracellular Ca++, indicating that Ca++-dependent release is not due to inhibition of NO formation from hydroxylamine. However, the response to NO-CYS was reduced by 35 to 50% in either nominally Ca++-free or 10 mM MgSO4-containing buffer. Interestingly, buffer containing ethylene glycol bis(β-aminoethyl ether)- N,N'-tetraacetic acid dramatically enhanced the formation of NO from NO-CYS and potentiated the NO-CYS response. Both NO-CYS- and hydroxylamine-induced [3H]NE release was inhibited by NE transport blockers, indicating a prominent role for reverse transport, NO-CYS completely inhibited synaptosomal uptake of [3H]NE (IC50~, 300 μM). NO generator-induced [3H]NE release has a glutamate-dependent component (see accompanying article). Inhibition of glutamate-evoked [3H]NE release by mazindol, an inhibitor of NE transport, suggests that the glutamate-dependent component also involves reversal of the NE transporter. These data suggest that NO produced from hydroxylamine or NO-CYS evoke both vesicular and nonvesicular release of hippocampal [3H]NE. Putative NO target molecules and the role of extracellular Ca++ are discussed.

Original languageEnglish (US)
Pages (from-to)14-22
Number of pages9
JournalJournal of Pharmacology and Experimental Therapeutics
Volume275
Issue number1
StatePublished - 1995

Fingerprint

Cyclic GMP
Norepinephrine
Nitric Oxide
Calcium
Hydroxylamine
Glutamic Acid
Buffers
6-anilino-5,8-quinolinedione
Mazindol
Conotoxins
Thapsigargin
Ethylene Glycol
Guanylate Cyclase
Methylene Blue
Nifedipine
Caffeine
Ether
Inhibitory Concentration 50

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{726027758de0469c922910b2133c5fab,
title = "Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic 3',5'-guanosine monophosphate",
abstract = "The mechanisms by which two nitrogen monoxide (NO) generators, hydroxylamine and S-nitroso-L-cysteine (NO-CYS), induce hippocampal [3H]norepinephrine ([3H]NE) release was investigated. Neither hydroxylamine- nor NO-CYS-induced release was affected by the guanylate cyclase inhibitors, methylene blue or LY 83,583. The effect of hydroxylamine was completely dependent on extracellular Ca++ and reduced by 40{\%} in the presence of ω-conotoxin GVIA, an N-type Ca++channel antagonist; however it was unaffected by Ni++, nifedipine, caffeine or thapsigargin. The stimulatory effect of hydroxylamine on hippocampal cyclic GMP formation was not significantly affected by removal of extracellular Ca++, indicating that Ca++-dependent release is not due to inhibition of NO formation from hydroxylamine. However, the response to NO-CYS was reduced by 35 to 50{\%} in either nominally Ca++-free or 10 mM MgSO4-containing buffer. Interestingly, buffer containing ethylene glycol bis(β-aminoethyl ether)- N,N'-tetraacetic acid dramatically enhanced the formation of NO from NO-CYS and potentiated the NO-CYS response. Both NO-CYS- and hydroxylamine-induced [3H]NE release was inhibited by NE transport blockers, indicating a prominent role for reverse transport, NO-CYS completely inhibited synaptosomal uptake of [3H]NE (IC50~, 300 μM). NO generator-induced [3H]NE release has a glutamate-dependent component (see accompanying article). Inhibition of glutamate-evoked [3H]NE release by mazindol, an inhibitor of NE transport, suggests that the glutamate-dependent component also involves reversal of the NE transporter. These data suggest that NO produced from hydroxylamine or NO-CYS evoke both vesicular and nonvesicular release of hippocampal [3H]NE. Putative NO target molecules and the role of extracellular Ca++ are discussed.",
author = "G. Lonart and Johnson, {K. M.}",
year = "1995",
language = "English (US)",
volume = "275",
pages = "14--22",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic 3',5'-guanosine monophosphate

AU - Lonart, G.

AU - Johnson, K. M.

PY - 1995

Y1 - 1995

N2 - The mechanisms by which two nitrogen monoxide (NO) generators, hydroxylamine and S-nitroso-L-cysteine (NO-CYS), induce hippocampal [3H]norepinephrine ([3H]NE) release was investigated. Neither hydroxylamine- nor NO-CYS-induced release was affected by the guanylate cyclase inhibitors, methylene blue or LY 83,583. The effect of hydroxylamine was completely dependent on extracellular Ca++ and reduced by 40% in the presence of ω-conotoxin GVIA, an N-type Ca++channel antagonist; however it was unaffected by Ni++, nifedipine, caffeine or thapsigargin. The stimulatory effect of hydroxylamine on hippocampal cyclic GMP formation was not significantly affected by removal of extracellular Ca++, indicating that Ca++-dependent release is not due to inhibition of NO formation from hydroxylamine. However, the response to NO-CYS was reduced by 35 to 50% in either nominally Ca++-free or 10 mM MgSO4-containing buffer. Interestingly, buffer containing ethylene glycol bis(β-aminoethyl ether)- N,N'-tetraacetic acid dramatically enhanced the formation of NO from NO-CYS and potentiated the NO-CYS response. Both NO-CYS- and hydroxylamine-induced [3H]NE release was inhibited by NE transport blockers, indicating a prominent role for reverse transport, NO-CYS completely inhibited synaptosomal uptake of [3H]NE (IC50~, 300 μM). NO generator-induced [3H]NE release has a glutamate-dependent component (see accompanying article). Inhibition of glutamate-evoked [3H]NE release by mazindol, an inhibitor of NE transport, suggests that the glutamate-dependent component also involves reversal of the NE transporter. These data suggest that NO produced from hydroxylamine or NO-CYS evoke both vesicular and nonvesicular release of hippocampal [3H]NE. Putative NO target molecules and the role of extracellular Ca++ are discussed.

AB - The mechanisms by which two nitrogen monoxide (NO) generators, hydroxylamine and S-nitroso-L-cysteine (NO-CYS), induce hippocampal [3H]norepinephrine ([3H]NE) release was investigated. Neither hydroxylamine- nor NO-CYS-induced release was affected by the guanylate cyclase inhibitors, methylene blue or LY 83,583. The effect of hydroxylamine was completely dependent on extracellular Ca++ and reduced by 40% in the presence of ω-conotoxin GVIA, an N-type Ca++channel antagonist; however it was unaffected by Ni++, nifedipine, caffeine or thapsigargin. The stimulatory effect of hydroxylamine on hippocampal cyclic GMP formation was not significantly affected by removal of extracellular Ca++, indicating that Ca++-dependent release is not due to inhibition of NO formation from hydroxylamine. However, the response to NO-CYS was reduced by 35 to 50% in either nominally Ca++-free or 10 mM MgSO4-containing buffer. Interestingly, buffer containing ethylene glycol bis(β-aminoethyl ether)- N,N'-tetraacetic acid dramatically enhanced the formation of NO from NO-CYS and potentiated the NO-CYS response. Both NO-CYS- and hydroxylamine-induced [3H]NE release was inhibited by NE transport blockers, indicating a prominent role for reverse transport, NO-CYS completely inhibited synaptosomal uptake of [3H]NE (IC50~, 300 μM). NO generator-induced [3H]NE release has a glutamate-dependent component (see accompanying article). Inhibition of glutamate-evoked [3H]NE release by mazindol, an inhibitor of NE transport, suggests that the glutamate-dependent component also involves reversal of the NE transporter. These data suggest that NO produced from hydroxylamine or NO-CYS evoke both vesicular and nonvesicular release of hippocampal [3H]NE. Putative NO target molecules and the role of extracellular Ca++ are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0028885759&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028885759&partnerID=8YFLogxK

M3 - Article

C2 - 7562542

AN - SCOPUS:0028885759

VL - 275

SP - 14

EP - 22

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 1

ER -