TY - JOUR
T1 - Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway
AU - Dreyer, Hans C.
AU - Glynn, Erin L.
AU - Lujan, Heidi L.
AU - Fry, Christopher S.
AU - DiCarlo, Stephen E.
AU - Rasmussen, Blake B.
PY - 2008/1
Y1 - 2008/1
N2 - Ribosomal S6 kinase 1 (S6K1) is a downstream component of the mammalian target of rapamycin (mTOR) signaling pathway and plays a regulatory role in translation initiation, protein synthesis, and muscle hypertrophy. AMP-activated protein kinase (AMPK) is a cellular energy sensor, a negative regulator of mTOR, and an inhibitor of protein synthesis. The purpose of this study was to determine whether the hypertrophy/cell growth-associated mTOR pathway was downregulated during muscle atrophy associated with chronic paraplegia. Soleus muscle was collected from male Sprague-Dawley rats 10 wk following complete T4-T5 spinal cord transection (paraplegic) and from sham-operated (control) rats. We utilized immunoprecipitation and Western blotting techniques to measure upstream [AMPK, Akt/protein kinase B (PKB)] and downstream components of the mTOR signaling pathway [mTOR, S6K1, SKAR, 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor (eIF) 4G and 2α]. Paraplegia was associated with significant soleus muscle atrophy (174 ± 8 vs. 240 ± 13 mg; P < 0.05). There was a reduction in phosphorylation of mTOR, S6K1, and eIF4G (P < 0.05) with no change in Akt/PKB or 4E-BP1 (P > 0.05). Total protein abundance of mTOR, S6K1, eIF2α, and Akt/PKB was decreased, and increased for SKAR (P < 0.05), whereas 4E-BP1 and eIF4G did not change (P > 0.05). S6K1 activity was significantly reduced in the paraplegic group (P < 0.05); however, AMPKα2 activity was not altered (3.5 ± 0.4 vs. 3.7 ± 0.5 pmol·mg -1·min-1, control vs. paraplegic rats). We conclude that paraplegia-induced muscle atrophy in rats is associated with a general downregulation of the mTOR signaling pathway. Therefore, in addition to upregulation of atrophy signaling during muscle wasting, downregulation of muscle cell growth/hypertrophy-associated signaling appears to be an important component of long-term muscle loss.
AB - Ribosomal S6 kinase 1 (S6K1) is a downstream component of the mammalian target of rapamycin (mTOR) signaling pathway and plays a regulatory role in translation initiation, protein synthesis, and muscle hypertrophy. AMP-activated protein kinase (AMPK) is a cellular energy sensor, a negative regulator of mTOR, and an inhibitor of protein synthesis. The purpose of this study was to determine whether the hypertrophy/cell growth-associated mTOR pathway was downregulated during muscle atrophy associated with chronic paraplegia. Soleus muscle was collected from male Sprague-Dawley rats 10 wk following complete T4-T5 spinal cord transection (paraplegic) and from sham-operated (control) rats. We utilized immunoprecipitation and Western blotting techniques to measure upstream [AMPK, Akt/protein kinase B (PKB)] and downstream components of the mTOR signaling pathway [mTOR, S6K1, SKAR, 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor (eIF) 4G and 2α]. Paraplegia was associated with significant soleus muscle atrophy (174 ± 8 vs. 240 ± 13 mg; P < 0.05). There was a reduction in phosphorylation of mTOR, S6K1, and eIF4G (P < 0.05) with no change in Akt/PKB or 4E-BP1 (P > 0.05). Total protein abundance of mTOR, S6K1, eIF2α, and Akt/PKB was decreased, and increased for SKAR (P < 0.05), whereas 4E-BP1 and eIF4G did not change (P > 0.05). S6K1 activity was significantly reduced in the paraplegic group (P < 0.05); however, AMPKα2 activity was not altered (3.5 ± 0.4 vs. 3.7 ± 0.5 pmol·mg -1·min-1, control vs. paraplegic rats). We conclude that paraplegia-induced muscle atrophy in rats is associated with a general downregulation of the mTOR signaling pathway. Therefore, in addition to upregulation of atrophy signaling during muscle wasting, downregulation of muscle cell growth/hypertrophy-associated signaling appears to be an important component of long-term muscle loss.
KW - AMP-activated protein kinase
KW - Akt
KW - Muscle wasting
KW - Rehabilitation
KW - Spinal cord injury
UR - http://www.scopus.com/inward/record.url?scp=38349038401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349038401&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00736.2007
DO - 10.1152/japplphysiol.00736.2007
M3 - Article
C2 - 17885021
AN - SCOPUS:38349038401
SN - 8750-7587
VL - 104
SP - 27
EP - 33
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 1
ER -