TY - JOUR
T1 - Cisplatin induces N-acetyl cysteine suppressible F2 isoprostane production and injury in renal tubular epithehal cells
AU - Salahudeen, Abdulla
AU - Poovala, Vandana
AU - Parry, Wilson
AU - Pande, Ravi
AU - Kanji, Vijaya
AU - Ansari, Naseem
AU - Morrow, Jason
AU - Roberts, Jackson
PY - 1998/8
Y1 - 1998/8
N2 - In the low intracellular chloride milieu, chloride ions of cisplatin may exchange for cellular SH moieties resulting in glutathione depletion, H2O2 accumulation, and lipid peroxidation. Cisplatin-induced lipid peroxidation, in addition to causing direct cellular injury, may further contribute to cisplatininduced renal dysfunction by generating vasoconstrictive E2-and F2-isoprostanes. The aim of this study was to determine whether cisplatin- induced renal epithelial (LLC-PK1 and primary human proximal tubular) cell injury is associated with increased production of isoprostanes, and whether this can be suppressed with a thiol donor, N-acetyl cysteine. It was confirmed that incubation of renal epithelial cells with cisplatin resulted in N-acetyl cysteine-inhibitable glutathione depletion, H2O2 accumulation, lipid degradation, and lactate dehydroge- nase release. In additional experiments, incubation of cells with cisplatin for 48 h was accompanied by a dose-related increase in total (free plus esterified) F2-isoprostanes. An increase in F2-isoprostanes was discernible at 16.5 μM cisplatin and doubled at 66.0 μM. N-Acetyl cysteine at 50 μM concentration effectively suppressed 66.0 μM cisplatin-induced increase in isoprostanes. Similar findings were also obtained in human cells. Thus, cisplatin-induced tubular cell injury is accompanied by increased isoprostane production through a mechanism involving thiol depletion. On the basis of this new finding, it is hypothesized that these arachidonic acid peroxidation products may be partially responsible for the cisplatin-induced renal vasoconstriction demonstrable in the in vivo models.
AB - In the low intracellular chloride milieu, chloride ions of cisplatin may exchange for cellular SH moieties resulting in glutathione depletion, H2O2 accumulation, and lipid peroxidation. Cisplatin-induced lipid peroxidation, in addition to causing direct cellular injury, may further contribute to cisplatininduced renal dysfunction by generating vasoconstrictive E2-and F2-isoprostanes. The aim of this study was to determine whether cisplatin- induced renal epithelial (LLC-PK1 and primary human proximal tubular) cell injury is associated with increased production of isoprostanes, and whether this can be suppressed with a thiol donor, N-acetyl cysteine. It was confirmed that incubation of renal epithelial cells with cisplatin resulted in N-acetyl cysteine-inhibitable glutathione depletion, H2O2 accumulation, lipid degradation, and lactate dehydroge- nase release. In additional experiments, incubation of cells with cisplatin for 48 h was accompanied by a dose-related increase in total (free plus esterified) F2-isoprostanes. An increase in F2-isoprostanes was discernible at 16.5 μM cisplatin and doubled at 66.0 μM. N-Acetyl cysteine at 50 μM concentration effectively suppressed 66.0 μM cisplatin-induced increase in isoprostanes. Similar findings were also obtained in human cells. Thus, cisplatin-induced tubular cell injury is accompanied by increased isoprostane production through a mechanism involving thiol depletion. On the basis of this new finding, it is hypothesized that these arachidonic acid peroxidation products may be partially responsible for the cisplatin-induced renal vasoconstriction demonstrable in the in vivo models.
UR - http://www.scopus.com/inward/record.url?scp=0031879928&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031879928&partnerID=8YFLogxK
M3 - Article
C2 - 9697667
AN - SCOPUS:0031879928
SN - 1046-6673
VL - 9
SP - 1448
EP - 1455
JO - Journal of the American Society of Nephrology
JF - Journal of the American Society of Nephrology
IS - 8
ER -