TY - JOUR
T1 - Clinical validation study of quantitative real-time PCR assay for detection and monitoring of BK virus nephropathy
AU - Kudose, Satoru
AU - Dong, Jianli
N1 - Publisher Copyright:
© 2014 by the Association of Clinical Scientists, Inc.
PY - 2014
Y1 - 2014
N2 - BK virus (BKV) causes nephropathy (BKVN) in renal transplant patients, but monitoring of BKV loads provides an opportunity to prevent BKVN. However, because viral load measurement is not standardized, each laboratory must validate their methodology. We performed a retrospective analysis of 1371 plasma and 600 urine BKV loads measured by the laboratory developed real-time polymerase chain reaction (RT-PCR) of BKV DNA and 346 biopsies from 284 patients in our renal transplant program. We assessed the ability of plasma and urine viral loads to predict the presence of BKVN in biopsy using the receiver-operator characteristic curve. We determined that the cut-offs 3.7 and 7.2 log copies/ml have the best sensitivity (100% and 100%) and specificity (97.6% and 97.5%) for the detection of concurrent biopsy with BKVN by plasma and urine viral load, respectively. Also, we determined that the presence of at least two viral loads greater than 2.8 log copies/ ml for plasma and 6.4 log copies/ml for urine within 30 days of biopsy can detect BKVN with similar operating characteristics. Lastly, among pairs of urine and plasma viral loads from the same day, we found that 375 of 376 urine viral loads <4 log copies/ml were accompanied by plasma viral loads <2.6 log copies/ ml, a finding which can alleviate the need for plasma viral load for most patients. In summary, our RT-PCR of BKV DNA has good operating characteristics, and our findings above can help in development of a better strategy to monitor BKV.
AB - BK virus (BKV) causes nephropathy (BKVN) in renal transplant patients, but monitoring of BKV loads provides an opportunity to prevent BKVN. However, because viral load measurement is not standardized, each laboratory must validate their methodology. We performed a retrospective analysis of 1371 plasma and 600 urine BKV loads measured by the laboratory developed real-time polymerase chain reaction (RT-PCR) of BKV DNA and 346 biopsies from 284 patients in our renal transplant program. We assessed the ability of plasma and urine viral loads to predict the presence of BKVN in biopsy using the receiver-operator characteristic curve. We determined that the cut-offs 3.7 and 7.2 log copies/ml have the best sensitivity (100% and 100%) and specificity (97.6% and 97.5%) for the detection of concurrent biopsy with BKVN by plasma and urine viral load, respectively. Also, we determined that the presence of at least two viral loads greater than 2.8 log copies/ ml for plasma and 6.4 log copies/ml for urine within 30 days of biopsy can detect BKVN with similar operating characteristics. Lastly, among pairs of urine and plasma viral loads from the same day, we found that 375 of 376 urine viral loads <4 log copies/ml were accompanied by plasma viral loads <2.6 log copies/ ml, a finding which can alleviate the need for plasma viral load for most patients. In summary, our RT-PCR of BKV DNA has good operating characteristics, and our findings above can help in development of a better strategy to monitor BKV.
UR - http://www.scopus.com/inward/record.url?scp=84910010583&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84910010583&partnerID=8YFLogxK
M3 - Article
C2 - 25361932
AN - SCOPUS:84910010583
SN - 0091-7370
VL - 44
SP - 455
EP - 460
JO - Annals of Clinical and Laboratory Science
JF - Annals of Clinical and Laboratory Science
IS - 4
ER -