TY - JOUR
T1 - Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma
AU - Xie, Xianbiao
AU - Ghadimi, Markus P.H.
AU - Young, Eric D.
AU - Belousov, Roman
AU - Zhu, Quan Sheng
AU - Liu, Juehui
AU - Lopez, Gonzalo
AU - Colombo, Chiara
AU - Peng, Tingsheng
AU - Reynoso, David
AU - Hornick, Jason L.
AU - Lazar, Alexander J.
AU - Lev, Dina
PY - 2011/9/15
Y1 - 2011/9/15
N2 - Purpose: Molecular deregulations underlying epithelioid sarcoma (ES) progression are poorly understood yet critically needed to develop new therapies. Epidermal growth factor receptor (EGFR) is over-expressed in ES; using preclinical models, we examined the ES EGFR role and assessed anti-ES EGFR blockade effects, alone and with mTOR inhibition. Experimental Design: EGFR and mTOR expression/activation was examined via tissue microarray (n = 27 human ES specimens; immunohistochemistry) and in human ES cell lines (Western blot and quantitative reverse transcriptase PCR). Cell proliferation, survival, migration, and invasion effects of EGFR and mTOR activation treated with erlotinib (anti-EGFR small-molecule inhibitor) alone and combined with rapamycin were assessed in cell culture assays. In vivo growth effects of erlotinib alone or with rapamycin were evaluated using severe combined immunodeficient mouse ES xenograft models. Results: EGFR was expressed and activated in ES specimens and cell lines. EGFR activation increased ES cell proliferation, motility, and invasion and induced cyclin D1, matrix metalloproteinase (MMP) 2, and MMP9 expression. EGFR blockade inhibited these processes and caused significant cytostatic ES growth inhibition in vivo. mTOR pathway activation at varying levels was identified in all tissue microarray-evaluable ES tissues; 88% of samples had no or reduced PTEN expression. Similarly, both ES cell lines showed enhanced mTOR activity; VAESBJ cells exhibited constitutive mTOR activation uncoupled from EGFR signaling. Most importantly, combined erlotinib/rapamycin resulted in synergistic anti-ES effects in vitro and induced superior tumor growth inhibition in vivo versus single agent administration. Conclusions: EGFR and mTOR signaling pathways are deregulated in ES. Preclinical ES model-derived insights suggest that combined inhibition of these targets might be beneficial, supporting evaluations in clinical trials.
AB - Purpose: Molecular deregulations underlying epithelioid sarcoma (ES) progression are poorly understood yet critically needed to develop new therapies. Epidermal growth factor receptor (EGFR) is over-expressed in ES; using preclinical models, we examined the ES EGFR role and assessed anti-ES EGFR blockade effects, alone and with mTOR inhibition. Experimental Design: EGFR and mTOR expression/activation was examined via tissue microarray (n = 27 human ES specimens; immunohistochemistry) and in human ES cell lines (Western blot and quantitative reverse transcriptase PCR). Cell proliferation, survival, migration, and invasion effects of EGFR and mTOR activation treated with erlotinib (anti-EGFR small-molecule inhibitor) alone and combined with rapamycin were assessed in cell culture assays. In vivo growth effects of erlotinib alone or with rapamycin were evaluated using severe combined immunodeficient mouse ES xenograft models. Results: EGFR was expressed and activated in ES specimens and cell lines. EGFR activation increased ES cell proliferation, motility, and invasion and induced cyclin D1, matrix metalloproteinase (MMP) 2, and MMP9 expression. EGFR blockade inhibited these processes and caused significant cytostatic ES growth inhibition in vivo. mTOR pathway activation at varying levels was identified in all tissue microarray-evaluable ES tissues; 88% of samples had no or reduced PTEN expression. Similarly, both ES cell lines showed enhanced mTOR activity; VAESBJ cells exhibited constitutive mTOR activation uncoupled from EGFR signaling. Most importantly, combined erlotinib/rapamycin resulted in synergistic anti-ES effects in vitro and induced superior tumor growth inhibition in vivo versus single agent administration. Conclusions: EGFR and mTOR signaling pathways are deregulated in ES. Preclinical ES model-derived insights suggest that combined inhibition of these targets might be beneficial, supporting evaluations in clinical trials.
UR - http://www.scopus.com/inward/record.url?scp=80052833534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052833534&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-11-0660
DO - 10.1158/1078-0432.CCR-11-0660
M3 - Article
C2 - 21821699
AN - SCOPUS:80052833534
SN - 1078-0432
VL - 17
SP - 5901
EP - 5912
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 18
ER -