Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease

Kenneth A. Narahara, Javier Villanueva-Meyer, Craig J. Thompson, Marianne Brizendine, Ismael Mena

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

Single-photon emission computed tomography (SPECT) using thallium-201 (Tl-201) was compared with technetium-99m hexakis 2-methoxyisobutyl isonitrile (Tc-99m MIBI) in 24 patients with coronary artery disease. Patients exercised to the same work load as each isotope was studied. Normal and hypoperfused left ventricular mass was determined with an automated method. Estimated total left ventricular mass was similar for both stress/redistribution Tl-201 and stress/ rest Tc-99m MIBI images. The mean estimated defect size in the redistribution Tl-201 images was 32 ± 34.7 vs 33 ± 38.4 g in the resting Tc-99m MIBI studies (difference not significant). The individual determinations of defect mass were highly correlated (r = 0.93; p < 0.0001). Estimated defect size in the stress Tl-201 images (52 ± 46.2 g) was significantly larger than the exercise Tc-99m MIBI estimates of defect mass (42 ± 39.9 g; p < 0.05). A linear correlation existed between stress thallium and technetium estimates of defect size (r = 0.85) but 15 of 24 Tc-99m MIBI defects were smaller than the Tl-201 defects. Partial redistribution of Tc-99m MIBI could explain the discordance. Stress Tc-99m MIBI SPECT defect size determined by visual interpretation or by the use of isocount analysis may be smaller than what is seen with stress Tl-201 SPECT.

Original languageEnglish (US)
Pages (from-to)1438-1444
Number of pages7
JournalThe American Journal of Cardiology
Volume66
Issue number20
DOIs
StatePublished - Dec 15 1990
Externally publishedYes

Fingerprint

Thallium
Technetium
Single-Photon Emission-Computed Tomography
Myocardial Ischemia
Coronary Artery Disease
Myocardial Infarction
Workload
Isotopes
Exercise

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Cite this

Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease. / Narahara, Kenneth A.; Villanueva-Meyer, Javier; Thompson, Craig J.; Brizendine, Marianne; Mena, Ismael.

In: The American Journal of Cardiology, Vol. 66, No. 20, 15.12.1990, p. 1438-1444.

Research output: Contribution to journalArticle

@article{1cdd507488db4ebc85ad8b16b9fa0b77,
title = "Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease",
abstract = "Single-photon emission computed tomography (SPECT) using thallium-201 (Tl-201) was compared with technetium-99m hexakis 2-methoxyisobutyl isonitrile (Tc-99m MIBI) in 24 patients with coronary artery disease. Patients exercised to the same work load as each isotope was studied. Normal and hypoperfused left ventricular mass was determined with an automated method. Estimated total left ventricular mass was similar for both stress/redistribution Tl-201 and stress/ rest Tc-99m MIBI images. The mean estimated defect size in the redistribution Tl-201 images was 32 ± 34.7 vs 33 ± 38.4 g in the resting Tc-99m MIBI studies (difference not significant). The individual determinations of defect mass were highly correlated (r = 0.93; p < 0.0001). Estimated defect size in the stress Tl-201 images (52 ± 46.2 g) was significantly larger than the exercise Tc-99m MIBI estimates of defect mass (42 ± 39.9 g; p < 0.05). A linear correlation existed between stress thallium and technetium estimates of defect size (r = 0.85) but 15 of 24 Tc-99m MIBI defects were smaller than the Tl-201 defects. Partial redistribution of Tc-99m MIBI could explain the discordance. Stress Tc-99m MIBI SPECT defect size determined by visual interpretation or by the use of isocount analysis may be smaller than what is seen with stress Tl-201 SPECT.",
author = "Narahara, {Kenneth A.} and Javier Villanueva-Meyer and Thompson, {Craig J.} and Marianne Brizendine and Ismael Mena",
year = "1990",
month = "12",
day = "15",
doi = "10.1016/0002-9149(90)90530-E",
language = "English (US)",
volume = "66",
pages = "1438--1444",
journal = "American Journal of Cardiology",
issn = "0002-9149",
publisher = "Elsevier Inc.",
number = "20",

}

TY - JOUR

T1 - Comparison of thallium-201 and technetium-99m hexakis 2-methoxyisobutyl isonitrile single-photon emission computed tomography for estimating the extent of myocardial ischemia and infarction in coronary artery disease

AU - Narahara, Kenneth A.

AU - Villanueva-Meyer, Javier

AU - Thompson, Craig J.

AU - Brizendine, Marianne

AU - Mena, Ismael

PY - 1990/12/15

Y1 - 1990/12/15

N2 - Single-photon emission computed tomography (SPECT) using thallium-201 (Tl-201) was compared with technetium-99m hexakis 2-methoxyisobutyl isonitrile (Tc-99m MIBI) in 24 patients with coronary artery disease. Patients exercised to the same work load as each isotope was studied. Normal and hypoperfused left ventricular mass was determined with an automated method. Estimated total left ventricular mass was similar for both stress/redistribution Tl-201 and stress/ rest Tc-99m MIBI images. The mean estimated defect size in the redistribution Tl-201 images was 32 ± 34.7 vs 33 ± 38.4 g in the resting Tc-99m MIBI studies (difference not significant). The individual determinations of defect mass were highly correlated (r = 0.93; p < 0.0001). Estimated defect size in the stress Tl-201 images (52 ± 46.2 g) was significantly larger than the exercise Tc-99m MIBI estimates of defect mass (42 ± 39.9 g; p < 0.05). A linear correlation existed between stress thallium and technetium estimates of defect size (r = 0.85) but 15 of 24 Tc-99m MIBI defects were smaller than the Tl-201 defects. Partial redistribution of Tc-99m MIBI could explain the discordance. Stress Tc-99m MIBI SPECT defect size determined by visual interpretation or by the use of isocount analysis may be smaller than what is seen with stress Tl-201 SPECT.

AB - Single-photon emission computed tomography (SPECT) using thallium-201 (Tl-201) was compared with technetium-99m hexakis 2-methoxyisobutyl isonitrile (Tc-99m MIBI) in 24 patients with coronary artery disease. Patients exercised to the same work load as each isotope was studied. Normal and hypoperfused left ventricular mass was determined with an automated method. Estimated total left ventricular mass was similar for both stress/redistribution Tl-201 and stress/ rest Tc-99m MIBI images. The mean estimated defect size in the redistribution Tl-201 images was 32 ± 34.7 vs 33 ± 38.4 g in the resting Tc-99m MIBI studies (difference not significant). The individual determinations of defect mass were highly correlated (r = 0.93; p < 0.0001). Estimated defect size in the stress Tl-201 images (52 ± 46.2 g) was significantly larger than the exercise Tc-99m MIBI estimates of defect mass (42 ± 39.9 g; p < 0.05). A linear correlation existed between stress thallium and technetium estimates of defect size (r = 0.85) but 15 of 24 Tc-99m MIBI defects were smaller than the Tl-201 defects. Partial redistribution of Tc-99m MIBI could explain the discordance. Stress Tc-99m MIBI SPECT defect size determined by visual interpretation or by the use of isocount analysis may be smaller than what is seen with stress Tl-201 SPECT.

UR - http://www.scopus.com/inward/record.url?scp=0025689014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025689014&partnerID=8YFLogxK

U2 - 10.1016/0002-9149(90)90530-E

DO - 10.1016/0002-9149(90)90530-E

M3 - Article

VL - 66

SP - 1438

EP - 1444

JO - American Journal of Cardiology

JF - American Journal of Cardiology

SN - 0002-9149

IS - 20

ER -