TY - JOUR
T1 - Contribution of poly(ADP-ribose)polymerase-1 activation and apoptosis in trichloroethene-mediated autoimmunity
AU - Wang, Gangduo
AU - Ma, Huaxian
AU - Wang, Jianling
AU - Khan, M. Firoze
N1 - Publisher Copyright:
© 2018
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Trichloroethene (TCE), a common environmental toxicant and widely used industrial solvent, has been implicated in the development of various autoimmune diseases (ADs). Although oxidative stress has been involved in TCE-mediated autoimmunity, the molecular mechanisms remain to be fully elucidated. These studies were, therefore, aimed to further explore the contribution of oxidative stress to TCE-mediated autoimmune response by specifically assessing the role of oxidative DNA damage, its repair enzyme poly(ADP-ribose)polymerase-1 (PARP-1) and apoptosis. To achieve this, groups of female MRL +/+ mice were treated with TCE, TCE plus N-acetylcysteine (NAC) or NAC alone (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day in drinking water) for 6 weeks. TCE treatment led to significantly higher levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the livers compared to controls, suggesting increased oxidative DNA damage. TCE-induced DNA damage was associated with significant activation of PARP-1 and increases in caspase-3, cleaved caspase-8 and -9, and alterations in Bcl-2 and Bax in the livers. Moreover, the TCE-mediated alterations corresponded with remarkable increases in the serum anti-ssDNA antibodies. Interestingly, NAC supplementation not only attenuated elevated 8-OHdG, PARP-1, caspase-3, cleaved caspase-9, and Bax, but also the TCE-mediated autoimmune response supported by significantly reduced serum anti-ssDNA antibodies. These results suggest that TCE-induced activation of PARP-1 followed by increased apoptosis presents a novel mechanism in TCE-associated autoimmune response and could potentially lead to development of targeted preventive and/or therapeutic strategies.
AB - Trichloroethene (TCE), a common environmental toxicant and widely used industrial solvent, has been implicated in the development of various autoimmune diseases (ADs). Although oxidative stress has been involved in TCE-mediated autoimmunity, the molecular mechanisms remain to be fully elucidated. These studies were, therefore, aimed to further explore the contribution of oxidative stress to TCE-mediated autoimmune response by specifically assessing the role of oxidative DNA damage, its repair enzyme poly(ADP-ribose)polymerase-1 (PARP-1) and apoptosis. To achieve this, groups of female MRL +/+ mice were treated with TCE, TCE plus N-acetylcysteine (NAC) or NAC alone (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day in drinking water) for 6 weeks. TCE treatment led to significantly higher levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the livers compared to controls, suggesting increased oxidative DNA damage. TCE-induced DNA damage was associated with significant activation of PARP-1 and increases in caspase-3, cleaved caspase-8 and -9, and alterations in Bcl-2 and Bax in the livers. Moreover, the TCE-mediated alterations corresponded with remarkable increases in the serum anti-ssDNA antibodies. Interestingly, NAC supplementation not only attenuated elevated 8-OHdG, PARP-1, caspase-3, cleaved caspase-9, and Bax, but also the TCE-mediated autoimmune response supported by significantly reduced serum anti-ssDNA antibodies. These results suggest that TCE-induced activation of PARP-1 followed by increased apoptosis presents a novel mechanism in TCE-associated autoimmune response and could potentially lead to development of targeted preventive and/or therapeutic strategies.
KW - Apoptosis
KW - Autoimmune disease
KW - N-acetylcysteine
KW - Oxidative stress
KW - Poly(ADP-ribose)polymerase-1
KW - Trichloroethene
UR - http://www.scopus.com/inward/record.url?scp=85054803921&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054803921&partnerID=8YFLogxK
U2 - 10.1016/j.taap.2018.10.012
DO - 10.1016/j.taap.2018.10.012
M3 - Article
C2 - 30315841
AN - SCOPUS:85054803921
SN - 0041-008X
VL - 362
SP - 28
EP - 34
JO - Toxicology and Applied Pharmacology
JF - Toxicology and Applied Pharmacology
ER -