Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection

Research output: Contribution to journalArticle

100 Citations (Scopus)

Abstract

Cytotoxic T-lymphocyte (CTL) activity developed against the major infected target cells of rickettsial infections, endothelial cells and macrophages. Spleen cells from mice immune to Rickettsia conorii exerted specific major histocompatibility complex (MHC) class I-matched CTL activity against R. conorii-infected SVEC-10 endothelial cells, with peak activity on day 10. Similarly, spleen cells from Rickettsia australis-immune mice exerted specific CTL activity against an R. australis-infected macrophage-like cell line. Gamma interferon (IFN-γ) gene knockout mice were more than 100-fold more susceptible to R. australis infection than wild-type C57BL/6 mice. MHC class I gene knockout mice were the most susceptible, more than 50,000-fold more susceptible to a lethal outcome of R. australis infection than wild-type C57BL/6 mice. These results indicate that CTL activity was more critical to recovery from rickettsial infection than were the effects of IFN-γ. The observation that perforin gene knockout mice were more than 100-fold more susceptible than wild-type C57BL/6 mice indicates that perforin-mediated activity accounts for a large component, but not all, of the CTL-mediated antirickettsial effect. CTL activity was expressed by immune CD8 T lymphocytes. Adoptive transfer of immune CD8 T lymphocytes from IFN-γ gene knockout mice into R. australis-infected IFN-γ gene knockout mice dramatically reduced the infectious rickettsial content in the organs, confirming that CD8 T lymphocytes provide immunity against rickettsiae besides that provided by the secretion of IFN-γ. CTLs appear to be crucial to recovery from rickettsial infection.

Original languageEnglish (US)
Pages (from-to)1841-1846
Number of pages6
JournalInfection and Immunity
Volume69
Issue number3
DOIs
StatePublished - 2001
Externally publishedYes

Fingerprint

Cytotoxic T-Lymphocytes
Gene Knockout Techniques
Knockout Mice
Interferons
Rickettsia conorii
Infection
Inbred C57BL Mouse
Rickettsia
Major Histocompatibility Complex
T-Lymphocytes
Spleen
Endothelial Cells
Macrophages
MHC Class I Genes
Perforin
Adoptive Transfer
Interferon-gamma
Immunity
Cell Line

ASJC Scopus subject areas

  • Immunology

Cite this

Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. / Walker, David; Olano, Juan; Feng, H. M.

In: Infection and Immunity, Vol. 69, No. 3, 2001, p. 1841-1846.

Research output: Contribution to journalArticle

@article{da67b20b14d14da783c3c61c073234bb,
title = "Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection",
abstract = "Cytotoxic T-lymphocyte (CTL) activity developed against the major infected target cells of rickettsial infections, endothelial cells and macrophages. Spleen cells from mice immune to Rickettsia conorii exerted specific major histocompatibility complex (MHC) class I-matched CTL activity against R. conorii-infected SVEC-10 endothelial cells, with peak activity on day 10. Similarly, spleen cells from Rickettsia australis-immune mice exerted specific CTL activity against an R. australis-infected macrophage-like cell line. Gamma interferon (IFN-γ) gene knockout mice were more than 100-fold more susceptible to R. australis infection than wild-type C57BL/6 mice. MHC class I gene knockout mice were the most susceptible, more than 50,000-fold more susceptible to a lethal outcome of R. australis infection than wild-type C57BL/6 mice. These results indicate that CTL activity was more critical to recovery from rickettsial infection than were the effects of IFN-γ. The observation that perforin gene knockout mice were more than 100-fold more susceptible than wild-type C57BL/6 mice indicates that perforin-mediated activity accounts for a large component, but not all, of the CTL-mediated antirickettsial effect. CTL activity was expressed by immune CD8 T lymphocytes. Adoptive transfer of immune CD8 T lymphocytes from IFN-γ gene knockout mice into R. australis-infected IFN-γ gene knockout mice dramatically reduced the infectious rickettsial content in the organs, confirming that CD8 T lymphocytes provide immunity against rickettsiae besides that provided by the secretion of IFN-γ. CTLs appear to be crucial to recovery from rickettsial infection.",
author = "David Walker and Juan Olano and Feng, {H. M.}",
year = "2001",
doi = "10.1128/IAI.69.3.1841-1846.2001",
language = "English (US)",
volume = "69",
pages = "1841--1846",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "3",

}

TY - JOUR

T1 - Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection

AU - Walker, David

AU - Olano, Juan

AU - Feng, H. M.

PY - 2001

Y1 - 2001

N2 - Cytotoxic T-lymphocyte (CTL) activity developed against the major infected target cells of rickettsial infections, endothelial cells and macrophages. Spleen cells from mice immune to Rickettsia conorii exerted specific major histocompatibility complex (MHC) class I-matched CTL activity against R. conorii-infected SVEC-10 endothelial cells, with peak activity on day 10. Similarly, spleen cells from Rickettsia australis-immune mice exerted specific CTL activity against an R. australis-infected macrophage-like cell line. Gamma interferon (IFN-γ) gene knockout mice were more than 100-fold more susceptible to R. australis infection than wild-type C57BL/6 mice. MHC class I gene knockout mice were the most susceptible, more than 50,000-fold more susceptible to a lethal outcome of R. australis infection than wild-type C57BL/6 mice. These results indicate that CTL activity was more critical to recovery from rickettsial infection than were the effects of IFN-γ. The observation that perforin gene knockout mice were more than 100-fold more susceptible than wild-type C57BL/6 mice indicates that perforin-mediated activity accounts for a large component, but not all, of the CTL-mediated antirickettsial effect. CTL activity was expressed by immune CD8 T lymphocytes. Adoptive transfer of immune CD8 T lymphocytes from IFN-γ gene knockout mice into R. australis-infected IFN-γ gene knockout mice dramatically reduced the infectious rickettsial content in the organs, confirming that CD8 T lymphocytes provide immunity against rickettsiae besides that provided by the secretion of IFN-γ. CTLs appear to be crucial to recovery from rickettsial infection.

AB - Cytotoxic T-lymphocyte (CTL) activity developed against the major infected target cells of rickettsial infections, endothelial cells and macrophages. Spleen cells from mice immune to Rickettsia conorii exerted specific major histocompatibility complex (MHC) class I-matched CTL activity against R. conorii-infected SVEC-10 endothelial cells, with peak activity on day 10. Similarly, spleen cells from Rickettsia australis-immune mice exerted specific CTL activity against an R. australis-infected macrophage-like cell line. Gamma interferon (IFN-γ) gene knockout mice were more than 100-fold more susceptible to R. australis infection than wild-type C57BL/6 mice. MHC class I gene knockout mice were the most susceptible, more than 50,000-fold more susceptible to a lethal outcome of R. australis infection than wild-type C57BL/6 mice. These results indicate that CTL activity was more critical to recovery from rickettsial infection than were the effects of IFN-γ. The observation that perforin gene knockout mice were more than 100-fold more susceptible than wild-type C57BL/6 mice indicates that perforin-mediated activity accounts for a large component, but not all, of the CTL-mediated antirickettsial effect. CTL activity was expressed by immune CD8 T lymphocytes. Adoptive transfer of immune CD8 T lymphocytes from IFN-γ gene knockout mice into R. australis-infected IFN-γ gene knockout mice dramatically reduced the infectious rickettsial content in the organs, confirming that CD8 T lymphocytes provide immunity against rickettsiae besides that provided by the secretion of IFN-γ. CTLs appear to be crucial to recovery from rickettsial infection.

UR - http://www.scopus.com/inward/record.url?scp=0035116045&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035116045&partnerID=8YFLogxK

U2 - 10.1128/IAI.69.3.1841-1846.2001

DO - 10.1128/IAI.69.3.1841-1846.2001

M3 - Article

C2 - 11179362

AN - SCOPUS:0035116045

VL - 69

SP - 1841

EP - 1846

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 3

ER -