Determination of the NMR solution structure of the cyclophilin A-cyclosporin A complex

C. Spitzfaden, Werner Braun, G. Wider, H. Widmer, K. Wüthrich

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

The three-dimensional NMR solution structure of the cyclophilin A (Cyp)-cyclosporin A (CsA) complex was determined, and here we provide a detailed description of the analysis of the NMR data and the structure calculation. Using 15N-and 13C-resolved three- and four-dimensional [1H, 1H]-nuclear Overhauser enhancement (NOE) spectroscopy with uniformly isotope-labeled Cyp in the complex, a final data set of 1810 intra-Cyp, 107 intra-CsA and 63 intermolecular NOE upper distance constraints was collected as input for the structure calculation with the program DIANA. A group of DIANA conformers, selected by a previously described analysis of the dependence of the maximal root-mean-square deviation (rmsd) among the individual conformers on the residual target function value, was subjected to energy refinement with the program FANTOM. The 22 best energy-refined conformers were then used to represent the solution structure. The average rmsd relative to the mean structure of these 22 conformers is 1.1 Å for the backbone atoms of all residues of the complex. The molecular architecture of Cyp in the Cyp-CsA complex includes an eight-stranded antiparallel β-barrel, which is closed on each side by an amphipathic helix. CsA is bound in a cavity formed by part of the barrel surface and four loops with nonregular secondary structure. Comparison of this structure with structures of Cyp-CsA and other Cyp-peptide complexes determined by different approaches shows extensive similarities.

Original languageEnglish
Pages (from-to)463-482
Number of pages20
JournalJournal of Biomolecular NMR
Volume4
Issue number4
DOIs
StatePublished - Jul 1994
Externally publishedYes

    Fingerprint

Keywords

  • Cyclophilin
  • Cyclosporin A
  • Drug-receptor interaction
  • Immune suppression
  • NMR structure

ASJC Scopus subject areas

  • Spectroscopy
  • Biochemistry
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this