Abstract
Single microtubules from squid axoplasm support bidirectional movement of organelles. We previously purified a microtubule translocator (kinesin) that moves latex beads in only one direction along microtubules. In this study, a polar array of microtubules assembled off of centrosomes in vitro was used to demonstrate that kinesin moves latex beads from the minus to the plus ends of microtubules, a direction that corresponds to anterograde transport in the axon. A crude solubilized fraction from squid axoplasm (S1a), however, generates bidirectional movement of beads along microtubules. Retrograde bead movement (1.4 μm/sec) is inhibited by N-ethylmaleimide and 20 μM vanadate while anterograde movement (0.6 μm/sec) is unaffected by these agents. Furthermore, a monoclonal antibody against kinesin, when coupled to Sepharose, removes the anterograde, but not the retrograde, bead translocator from S1a. These results indicate that there is a retrograde bead translocator which is pharmacologically and immunologically distinct from kinesin.
Original language | English (US) |
---|---|
Pages (from-to) | 623-632 |
Number of pages | 10 |
Journal | Cell |
Volume | 43 |
Issue number | 3 PART 2 |
DOIs | |
State | Published - Dec 1985 |
Externally published | Yes |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology