Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

Raj Kumar, William Calhoun

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.

Original languageEnglish (US)
Pages (from-to)845-854
Number of pages10
JournalBiologics: Targets and Therapy
Volume2
Issue number4
StatePublished - 2008

Fingerprint

Glucocorticoid Receptors
Phosphorylation
Transcription Factors
Transcriptional Activation
Phosphotransferases
Proteins
Phosphoproteins
Post Translational Protein Processing
Cytoplasmic and Nuclear Receptors
Genes

Keywords

  • Coactivators
  • Gene regulation
  • Glucocorticoid receptor
  • Phosphorylation
  • Transactivation activity

ASJC Scopus subject areas

  • Oncology
  • Immunology and Allergy
  • Pharmacology (medical)
  • Gastroenterology
  • Rheumatology

Cite this

@article{c21af9df89ac4463bfd4345d01918960,
title = "Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation",
abstract = "Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.",
keywords = "Coactivators, Gene regulation, Glucocorticoid receptor, Phosphorylation, Transactivation activity",
author = "Raj Kumar and William Calhoun",
year = "2008",
language = "English (US)",
volume = "2",
pages = "845--854",
journal = "Biologics: Targets and Therapy",
issn = "1177-5475",
publisher = "Dove Medical Press Ltd.",
number = "4",

}

TY - JOUR

T1 - Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

AU - Kumar, Raj

AU - Calhoun, William

PY - 2008

Y1 - 2008

N2 - Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.

AB - Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.

KW - Coactivators

KW - Gene regulation

KW - Glucocorticoid receptor

KW - Phosphorylation

KW - Transactivation activity

UR - http://www.scopus.com/inward/record.url?scp=77952664545&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77952664545&partnerID=8YFLogxK

M3 - Article

C2 - 19707462

AN - SCOPUS:77952664545

VL - 2

SP - 845

EP - 854

JO - Biologics: Targets and Therapy

JF - Biologics: Targets and Therapy

SN - 1177-5475

IS - 4

ER -