TY - JOUR
T1 - Discovery of insect and human dengue virus host factors
AU - Sessions, October M.
AU - Barrows, Nicholas J.
AU - Souza-Neto, Jayme A.
AU - Robinson, Timothy J.
AU - Hershey, Christine L.
AU - Rodgers, Mary A.
AU - Ramirez, Jose L.
AU - Dimopoulos, George
AU - Yang, Priscilla L.
AU - Pearson, James L.
AU - Garcia-Blanco, Mariano A.
N1 - Funding Information:
Acknowledgements We thank A. de Silva, C. Lambeth, E. Wagner, F. Scholle, P. Florez de Sessions, J. Umbach, S. Braderick, B. Cullen, J. Nevins, M. Marengo, M. Gromeier, R. Wharton, D. Gubler, E. E. Ooi and S. Vasudevan, and members of the Triangle Flavivirology Group for reagents, time and insights. M.A.G.-B. thanks the late R. Shope for his inspiration and mentorship. We thank the Drosophila RNAi Screening Center (Harvard Medical School), which is funded by National Institutes of Health (NIH) grant RO1 GM067761, for expert assistance. We give special thanks to B. Mathey-Prevot for his support, advice and expertise, and for pointing out the important overlap of our screen with others previously published. We acknowledge funding from the NIH (R21-AI64925 and 5U54-AI057157-05S to M.A.G.-B., 1RO1AI076442 to P.L.Y., and 1R01AI061576-01 to G.D.); the American Society of Microbiology (to J.L.R.); and Johns Hopkins Malaria Research Institute (to J.A.S.-N.). M.A.R. is a Karnovsky Fellow. P.L.Y. acknowledges an award from the Giovanni Armenise–Harvard Foundation. We also acknowledge funding from the North Carolina Biotechnology Center, NIH (1SA0RR024572-1 to M.A.G.-B.), Duke Center for RNA Biology, Duke University School of Medicine, Institute of Genome Sciences and Policy, and Duke Comprehensive Cancer Center (5P30-CA14236) in support of the RNAi facility.
PY - 2009/4/23
Y1 - 2009/4/23
N2 - Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and α-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.
AB - Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and α-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.
UR - http://www.scopus.com/inward/record.url?scp=65549169178&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65549169178&partnerID=8YFLogxK
U2 - 10.1038/nature07967
DO - 10.1038/nature07967
M3 - Article
C2 - 19396146
AN - SCOPUS:65549169178
SN - 0028-0836
VL - 458
SP - 1047
EP - 1050
JO - Nature
JF - Nature
IS - 7241
ER -