TY - JOUR
T1 - Distinct gut microbiome features characterize Fasciola hepatica infection and predict triclabendazole treatment outcomes in Peruvian patients
AU - Lee, Giljae
AU - Rosa, Bruce A.
AU - Fernandez-Baca, Martha V.
AU - Martin, John
AU - Ore, Rodrigo A.
AU - Ortiz, Pedro
AU - Cabada, Miguel M.
AU - Mitreva, Makedonka
N1 - Publisher Copyright:
Copyright © 2025 Lee, Rosa, Fernandez-Baca, Martin, Ore, Ortiz, Cabada and Mitreva.
PY - 2025
Y1 - 2025
N2 - Background: Fasciola hepatica, a globally distributed helminth, causes fasciolosis, a disease with significant health and economic impacts. Variability in triclabendazole (TCBZ) efficacy and emerging resistance are remaining challenges. Evidence suggests that the gut microbiome influences host-helminth interactions and is associated with anthelmintic effects, but its association with human F. hepatica infection and TCBZ efficacy is not well understood. Methods: In this study, we investigated the relationship between Fasciola hepatica infection and the gut microbiome through metagenomic shotgun sequencing of 30 infected and 60 age- and sex-matched uninfected individuals from Peru. Additionally, we performed a longitudinal analysis to evaluate microbiome dynamics in relation to TCBZ treatment response. Results and discussion: Infection was associated with specific microbial taxonomic and functional features, including higher abundance of Negativibacillus sp900547015, Blautia A sp000285855, and Prevotella sp002299635 species, and enrichment of microbial pathways linked to survival under stress and depletion of pathways for microbial growth. Unexpectedly, we identified that responders to TCBZ treatment (who cleared infection) harbored many microbiome features significantly different relative to non-responders, both before and after treatment. Specifically, the microbiomes of responders had a higher abundance Firmicutes A and Bacteroides species as well as phospholipid synthesis and glucuronidation pathways, while non-responders had higher abundance of Actinobacteria species including several from the Parolsenella and Bifidobacterium genera, and Bifidobacterium shunt and amino acid biosynthesis pathways. Conclusions: Our findings underscore the impact of helminth infection on gut microbiome and suggest a potential role of gut microbiota in modulating TCBZ efficacy, offering novel insights into F. hepatica-microbiome interactions and paving the way for microbiome-informed treatment approaches.
AB - Background: Fasciola hepatica, a globally distributed helminth, causes fasciolosis, a disease with significant health and economic impacts. Variability in triclabendazole (TCBZ) efficacy and emerging resistance are remaining challenges. Evidence suggests that the gut microbiome influences host-helminth interactions and is associated with anthelmintic effects, but its association with human F. hepatica infection and TCBZ efficacy is not well understood. Methods: In this study, we investigated the relationship between Fasciola hepatica infection and the gut microbiome through metagenomic shotgun sequencing of 30 infected and 60 age- and sex-matched uninfected individuals from Peru. Additionally, we performed a longitudinal analysis to evaluate microbiome dynamics in relation to TCBZ treatment response. Results and discussion: Infection was associated with specific microbial taxonomic and functional features, including higher abundance of Negativibacillus sp900547015, Blautia A sp000285855, and Prevotella sp002299635 species, and enrichment of microbial pathways linked to survival under stress and depletion of pathways for microbial growth. Unexpectedly, we identified that responders to TCBZ treatment (who cleared infection) harbored many microbiome features significantly different relative to non-responders, both before and after treatment. Specifically, the microbiomes of responders had a higher abundance Firmicutes A and Bacteroides species as well as phospholipid synthesis and glucuronidation pathways, while non-responders had higher abundance of Actinobacteria species including several from the Parolsenella and Bifidobacterium genera, and Bifidobacterium shunt and amino acid biosynthesis pathways. Conclusions: Our findings underscore the impact of helminth infection on gut microbiome and suggest a potential role of gut microbiota in modulating TCBZ efficacy, offering novel insights into F. hepatica-microbiome interactions and paving the way for microbiome-informed treatment approaches.
KW - Fasciola hepatica
KW - intestinal microbiome
KW - liver fluke
KW - longitudinal study
KW - metagenomic shotgun sequencing
KW - treatment response
KW - triclabendazole
UR - http://www.scopus.com/inward/record.url?scp=105000730946&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000730946&partnerID=8YFLogxK
U2 - 10.3389/fcimb.2025.1555171
DO - 10.3389/fcimb.2025.1555171
M3 - Article
C2 - 40129931
AN - SCOPUS:105000730946
SN - 2235-2988
VL - 15
JO - Frontiers in Cellular and Infection Microbiology
JF - Frontiers in Cellular and Infection Microbiology
M1 - 1555171
ER -