TY - JOUR
T1 - E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model
AU - Sayed, Ibrahim M.
AU - Chakraborty, Anirban
AU - Inouye, Kaili
AU - Dugan, Leanne
AU - Tocci, Stefania
AU - Advani, Ira
AU - Park, Kenneth
AU - Gaboyan, Samvel
AU - Kasaraneni, Nikita
AU - Ma, Benjamin
AU - Hazra, Tapas K.
AU - Das, Soumita
AU - Crotty Alexander, Laura E.
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
PY - 2025/3
Y1 - 2025/3
N2 - E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 11–16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2 h exposures per day (1 h of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot, and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
AB - E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 11–16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2 h exposures per day (1 h of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot, and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
KW - CPC-APC mice
KW - Cigarette smoking
KW - Colorectal cancer
KW - DNA damage
KW - DNA glycosylase
KW - Dual use
KW - E.cig
KW - Inflammation
KW - Stemness markers
UR - https://www.scopus.com/pages/publications/85217269772
UR - https://www.scopus.com/inward/citedby.url?scp=85217269772&partnerID=8YFLogxK
U2 - 10.1007/s00204-024-03932-x
DO - 10.1007/s00204-024-03932-x
M3 - Article
C2 - 39786590
AN - SCOPUS:85217269772
SN - 0340-5761
VL - 99
SP - 1223
EP - 1236
JO - Archives of Toxicology
JF - Archives of Toxicology
IS - 3
M1 - 690878
ER -