TY - JOUR
T1 - Effect of CAD on Radiologists' Detection of Lung Nodules on Thoracic CT Scans
T2 - Analysis of an Observer Performance Study by Nodule Size
AU - Sahiner, Berkman
AU - Chan, Heang Ping
AU - Hadjiiski, Lubomir M.
AU - Cascade, Philip N.
AU - Kazerooni, Ella A.
AU - Chughtai, Aamer R.
AU - Poopat, Chad
AU - Song, Thomas
AU - Frank, Luba
AU - Stojanovska, Jadranka
AU - Attili, Anil
N1 - Funding Information:
Supported by USPHS grant CA93517 .
PY - 2009/12
Y1 - 2009/12
N2 - Rationale and Objectives: To retrospectively investigate the effect of a computer-aided detection (CAD) system on radiologists' performance for detecting small pulmonary nodules in computed tomography (CT) examinations, with a panel of expert radiologists serving as the reference standard. Materials and Methods: Institutional review board approval was obtained. Our dataset contained 52 CT examinations collected by the Lung Image Database Consortium, and 33 from our institution. All CTs were read by multiple expert thoracic radiologists to identify the reference standard for detection. Six other thoracic radiologists read the CT examinations first without and then with CAD. Performance was evaluated using free-response receiver operating characteristics (FROC) and the jackknife FROC analysis methods (JAFROC) for nodules above different diameter thresholds. Results: A total of 241 nodules, ranging in size from 3.0 to 18.6 mm (mean, 5.3 mm) were identified as the reference standard. At diameter thresholds of 3, 4, 5, and 6 mm, the CAD system had a sensitivity of 54%, 64%, 68%, and 76%, respectively, with an average of 5.6 false positives (FPs) per scan. Without CAD, the average figures of merit (FOMs) for the six radiologists, obtained from JAFROC analysis, were 0.661, 0.729, 0.793, and 0.838 for the same nodule diameter thresholds, respectively. With CAD, the corresponding average FOMs improved to 0.705, 0.763, 0.810, and 0.862, respectively. The improvement achieved statistical significance for nodules at the 3 and 4 mm thresholds (P = .002 and .020, respectively), and did not achieve significance at 5 and 6 mm (P = .18 and .13, respectively). At a nodule diameter threshold of 3 mm, the radiologists' average sensitivity and FP rate were 0.56 and 0.67, respectively, without CAD, and 0.67 and 0.78 with CAD. Conclusion: CAD improves thoracic radiologists' performance for detecting pulmonary nodules smaller than 5 mm on CT examinations, which are often overlooked by visual inspection alone.
AB - Rationale and Objectives: To retrospectively investigate the effect of a computer-aided detection (CAD) system on radiologists' performance for detecting small pulmonary nodules in computed tomography (CT) examinations, with a panel of expert radiologists serving as the reference standard. Materials and Methods: Institutional review board approval was obtained. Our dataset contained 52 CT examinations collected by the Lung Image Database Consortium, and 33 from our institution. All CTs were read by multiple expert thoracic radiologists to identify the reference standard for detection. Six other thoracic radiologists read the CT examinations first without and then with CAD. Performance was evaluated using free-response receiver operating characteristics (FROC) and the jackknife FROC analysis methods (JAFROC) for nodules above different diameter thresholds. Results: A total of 241 nodules, ranging in size from 3.0 to 18.6 mm (mean, 5.3 mm) were identified as the reference standard. At diameter thresholds of 3, 4, 5, and 6 mm, the CAD system had a sensitivity of 54%, 64%, 68%, and 76%, respectively, with an average of 5.6 false positives (FPs) per scan. Without CAD, the average figures of merit (FOMs) for the six radiologists, obtained from JAFROC analysis, were 0.661, 0.729, 0.793, and 0.838 for the same nodule diameter thresholds, respectively. With CAD, the corresponding average FOMs improved to 0.705, 0.763, 0.810, and 0.862, respectively. The improvement achieved statistical significance for nodules at the 3 and 4 mm thresholds (P = .002 and .020, respectively), and did not achieve significance at 5 and 6 mm (P = .18 and .13, respectively). At a nodule diameter threshold of 3 mm, the radiologists' average sensitivity and FP rate were 0.56 and 0.67, respectively, without CAD, and 0.67 and 0.78 with CAD. Conclusion: CAD improves thoracic radiologists' performance for detecting pulmonary nodules smaller than 5 mm on CT examinations, which are often overlooked by visual inspection alone.
KW - CT
KW - Lung Nodule
KW - computer-aided detection
UR - http://www.scopus.com/inward/record.url?scp=70350462590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350462590&partnerID=8YFLogxK
U2 - 10.1016/j.acra.2009.08.006
DO - 10.1016/j.acra.2009.08.006
M3 - Article
C2 - 19896069
AN - SCOPUS:70350462590
SN - 1076-6332
VL - 16
SP - 1518
EP - 1530
JO - Academic Radiology
JF - Academic Radiology
IS - 12
ER -