Abstract
Background: Current evidence from both experimental and human studies indicates that omega-6 polyunsaturated fatty acids (n-6 PUFAs) promote breast tumor development, whereas long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) exert suppressive effects. The ratio of n-6 to n-3 fatty acids appears to be an important factor in controlling tumor development. Human cells usually have a very high n-6/n-3 fatty acid ratio because they cannot convert n-6 PUFAs to n-3 PUFAs due to lack of an n-3 desaturase found in C. elegans. Materials and Methods: Adenoviral strategies were used to introduce the C. elegans fat-1 gene encoding an n-3 fatty acid desaturase into human breast cancer cells followed by examination of the n-6/n-3 fatty acid ratio and growth of the cells. Results: Infection of MCF-7 cells with an adenovirus carrying the fat-1 gene resulted in a high expression of the n-3 fatty acid desaturase. Lipid analysis indicated a remarkable increase in the levels of n-3 PUFAs accompanied with a large decrease in the contents of n-6 PUFAs, leading to a change of the n-6/n-3 ratio from 12.0 to 0.8. Accordingly, production of the eicosanoids derived from n-6 PUFA was reduced significantly in cells expressing the fat-1 gene. Importantly, the gene transfer induced mass cell death and inhibited cell proliferation. Conclusion: The gene transfer of the n-3 fatty acid desaturase, as a novel approach, can effectively modify the n-6/n-3 fatty acid ratio of human tumor cells and provide an anticancer effect, without the need of exogenous n-3 PUFA supplementation. These data also increase the understanding of the effects of n-3 fatty acids and the n-6/n-3 ratio on cancer prevention and treatment.
Original language | English (US) |
---|---|
Pages (from-to) | 537-543 |
Number of pages | 7 |
Journal | Anticancer Research |
Volume | 22 |
Issue number | 2 A |
State | Published - 2002 |
Externally published | Yes |
Keywords
- Breast cancer
- Gene transfer
- Proliferation and apopotosis
- n-3 fatty acid desaturase
- n-6/n-3 fatty acid ratio
ASJC Scopus subject areas
- Oncology
- Cancer Research