Effects of nebulized adipose-derived mesenchymal stem cells on acute lung injury following smoke inhalation in sheep

Yosuke Niimi, Tuvshintugs Baljinnyam, Satoshi Fukuda, Clark R. Andersen, John R. Salsbury, Jong O. Lee, Donald S. Prough, Perenlei Enkhbaatar

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Introduction: Treatment of ARDS caused by smoke inhalation is challenging with no specific therapies available. The aim of this study was to test the efficacy of nebulized adipose-derived mesenchymal stem cells (ASCs) in a well-characterized, clinically relevant ovine model of smoke inhalation injury. Material and Methods: Fourteen female Merino sheep were surgically instrumented 5–7 days prior to study. After induction of acute lung injury (ALI) by cooled cotton smoke insufflation into the lungs (under anesthesia and analgesia), sheep were placed on a mechanical ventilator for 48 hrs and monitored for cardiopulmonary hemodynamics in a conscious state. ASCs were isolated from ovine adipose tissue. Sheep were randomly allocated to two groups after smoke injury: 1) ASCs group (n = 6): 10 million ASCs were nebulized into the airway at 1 hr post-injury; and 2) Control group (n = 8): Nebulized with saline into the airways at 1 hr post-injury. ASCs were labeled with green fluorescent protein (GFP) to trace cells within the lung. ASCs viability was determined in bronchoalveolar lavage fluid (BALF). Results: PaO2/FiO2 in the ASCs group was significantly higher than in the control group (p = 0.001) at 24 hrs. Oxygenation index: (mean airway pressure × FiO2/PaO2) was significantly lower in the ASCs group at 36 hr (p = 0.003). Pulmonary shunt fraction tended to be lower in the ASCs group as compared to the control group. GFP-labelled ASCs were found on the surface of trachea epithelium 48 hrs after injury. The viability of ASCs in BALF was significantly lower than those exposed to the control vehicle solution. Conclusion: Nebulized ASCs moderately improved pulmonary function and delayed the onset of ARDS.

Original languageEnglish (US)
Article number110638
JournalInternational Immunopharmacology
StatePublished - Oct 2023
Externally publishedYes


  • ARDS
  • Adipose-derived mesenchymal stem cells
  • Nebulization
  • Sheep
  • Smoke inhalation

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Pharmacology


Dive into the research topics of 'Effects of nebulized adipose-derived mesenchymal stem cells on acute lung injury following smoke inhalation in sheep'. Together they form a unique fingerprint.

Cite this