Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η

L. Haracska, S. L. Yu, R. E. Johnson, Louise Prakash, Satya Prakash

Research output: Contribution to journalArticle

271 Citations (Scopus)

Abstract

Oxidative damage to DNA has been proposed to have a role in cancer and ageing1. Oxygen-free radicals formed during normal aerobic cellular metabolism attack bases in DNA, and 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the adducts formed2,3. Eukaryotic replicative DNA polymerases replicate DNA containing 8-oxoG by inserting an adenine opposite the lesion4; consequently, 8-oxoG is highly mutagenic and causes G:C to T:A transversions5. Genetic studies in yeast have indicated a role for mismatch repair in minimizing the incidence of these mutations. In Saccharomyces cerevisiae, deletion of OGG1, encoding a DNA glycosylase that functions in the removal of 8-oxoG when paired with C, causes an increase in the rate of G:C to T:A transversions6. The ogg1Δ msh2Δ double mutant displays a higher rate of CAN1s to can1r forward mutations than the ogg1Δ or msh2Δ single mutants, and this enhanced mutagenesis is primarily due to G:C to T:A transversions7. The gene RAD30 of S. cerevisiae encodes a DNA polymerase, Polη, that efficiently replicates DNA containing a cis-syn thymine-thymine (T-T) dimer by inserting two adenines across from the dimer8. In humans, mutations in the yeast RAD30 counterpart, POLH, cause the variant form of xeroderma pigmentosum9.10 (XP-V), and XP-V individuals suffer from a high incidence of sunlight-induced skin cancers. Here we show that yeast and human POLη replicate DNA containing 8-oxoG efficiently and accurately by inserting a cytosine across from the lesion and by proficiently extending from this base pair. Consistent with these biochemical studies, a synergistic increase in the rate of spontaneous mutations occurs in the absence of POLη in the yeast ogg1Δ mutant. Our results suggest an additional role for Polη in the prevention of internal cancers in humans that would otherwise result from the mutagenic replication of 8-oxoG in DNA.

Original languageEnglish (US)
Pages (from-to)458-461
Number of pages4
JournalNature Genetics
Volume25
Issue number4
DOIs
StatePublished - 2000

Fingerprint

DNA-Directed DNA Polymerase
Yeasts
DNA
Adenine
Mutation
Saccharomyces cerevisiae
DNA Glycosylases
Ichthyosis
Pyrimidine Dimers
DNA Mismatch Repair
Thymine
Sunlight
Cytosine
Incidence
Skin Neoplasms
Mutation Rate
Mutagenesis
Base Pairing
DNA Damage
Free Radicals

ASJC Scopus subject areas

  • Genetics(clinical)
  • Genetics

Cite this

Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η. / Haracska, L.; Yu, S. L.; Johnson, R. E.; Prakash, Louise; Prakash, Satya.

In: Nature Genetics, Vol. 25, No. 4, 2000, p. 458-461.

Research output: Contribution to journalArticle

@article{86e3d558522e402c930fe38f22076336,
title = "Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η",
abstract = "Oxidative damage to DNA has been proposed to have a role in cancer and ageing1. Oxygen-free radicals formed during normal aerobic cellular metabolism attack bases in DNA, and 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the adducts formed2,3. Eukaryotic replicative DNA polymerases replicate DNA containing 8-oxoG by inserting an adenine opposite the lesion4; consequently, 8-oxoG is highly mutagenic and causes G:C to T:A transversions5. Genetic studies in yeast have indicated a role for mismatch repair in minimizing the incidence of these mutations. In Saccharomyces cerevisiae, deletion of OGG1, encoding a DNA glycosylase that functions in the removal of 8-oxoG when paired with C, causes an increase in the rate of G:C to T:A transversions6. The ogg1Δ msh2Δ double mutant displays a higher rate of CAN1s to can1r forward mutations than the ogg1Δ or msh2Δ single mutants, and this enhanced mutagenesis is primarily due to G:C to T:A transversions7. The gene RAD30 of S. cerevisiae encodes a DNA polymerase, Polη, that efficiently replicates DNA containing a cis-syn thymine-thymine (T-T) dimer by inserting two adenines across from the dimer8. In humans, mutations in the yeast RAD30 counterpart, POLH, cause the variant form of xeroderma pigmentosum9.10 (XP-V), and XP-V individuals suffer from a high incidence of sunlight-induced skin cancers. Here we show that yeast and human POLη replicate DNA containing 8-oxoG efficiently and accurately by inserting a cytosine across from the lesion and by proficiently extending from this base pair. Consistent with these biochemical studies, a synergistic increase in the rate of spontaneous mutations occurs in the absence of POLη in the yeast ogg1Δ mutant. Our results suggest an additional role for Polη in the prevention of internal cancers in humans that would otherwise result from the mutagenic replication of 8-oxoG in DNA.",
author = "L. Haracska and Yu, {S. L.} and Johnson, {R. E.} and Louise Prakash and Satya Prakash",
year = "2000",
doi = "10.1038/78169",
language = "English (US)",
volume = "25",
pages = "458--461",
journal = "Nature Genetics",
issn = "1061-4036",
publisher = "Nature Publishing Group",
number = "4",

}

TY - JOUR

T1 - Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η

AU - Haracska, L.

AU - Yu, S. L.

AU - Johnson, R. E.

AU - Prakash, Louise

AU - Prakash, Satya

PY - 2000

Y1 - 2000

N2 - Oxidative damage to DNA has been proposed to have a role in cancer and ageing1. Oxygen-free radicals formed during normal aerobic cellular metabolism attack bases in DNA, and 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the adducts formed2,3. Eukaryotic replicative DNA polymerases replicate DNA containing 8-oxoG by inserting an adenine opposite the lesion4; consequently, 8-oxoG is highly mutagenic and causes G:C to T:A transversions5. Genetic studies in yeast have indicated a role for mismatch repair in minimizing the incidence of these mutations. In Saccharomyces cerevisiae, deletion of OGG1, encoding a DNA glycosylase that functions in the removal of 8-oxoG when paired with C, causes an increase in the rate of G:C to T:A transversions6. The ogg1Δ msh2Δ double mutant displays a higher rate of CAN1s to can1r forward mutations than the ogg1Δ or msh2Δ single mutants, and this enhanced mutagenesis is primarily due to G:C to T:A transversions7. The gene RAD30 of S. cerevisiae encodes a DNA polymerase, Polη, that efficiently replicates DNA containing a cis-syn thymine-thymine (T-T) dimer by inserting two adenines across from the dimer8. In humans, mutations in the yeast RAD30 counterpart, POLH, cause the variant form of xeroderma pigmentosum9.10 (XP-V), and XP-V individuals suffer from a high incidence of sunlight-induced skin cancers. Here we show that yeast and human POLη replicate DNA containing 8-oxoG efficiently and accurately by inserting a cytosine across from the lesion and by proficiently extending from this base pair. Consistent with these biochemical studies, a synergistic increase in the rate of spontaneous mutations occurs in the absence of POLη in the yeast ogg1Δ mutant. Our results suggest an additional role for Polη in the prevention of internal cancers in humans that would otherwise result from the mutagenic replication of 8-oxoG in DNA.

AB - Oxidative damage to DNA has been proposed to have a role in cancer and ageing1. Oxygen-free radicals formed during normal aerobic cellular metabolism attack bases in DNA, and 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the adducts formed2,3. Eukaryotic replicative DNA polymerases replicate DNA containing 8-oxoG by inserting an adenine opposite the lesion4; consequently, 8-oxoG is highly mutagenic and causes G:C to T:A transversions5. Genetic studies in yeast have indicated a role for mismatch repair in minimizing the incidence of these mutations. In Saccharomyces cerevisiae, deletion of OGG1, encoding a DNA glycosylase that functions in the removal of 8-oxoG when paired with C, causes an increase in the rate of G:C to T:A transversions6. The ogg1Δ msh2Δ double mutant displays a higher rate of CAN1s to can1r forward mutations than the ogg1Δ or msh2Δ single mutants, and this enhanced mutagenesis is primarily due to G:C to T:A transversions7. The gene RAD30 of S. cerevisiae encodes a DNA polymerase, Polη, that efficiently replicates DNA containing a cis-syn thymine-thymine (T-T) dimer by inserting two adenines across from the dimer8. In humans, mutations in the yeast RAD30 counterpart, POLH, cause the variant form of xeroderma pigmentosum9.10 (XP-V), and XP-V individuals suffer from a high incidence of sunlight-induced skin cancers. Here we show that yeast and human POLη replicate DNA containing 8-oxoG efficiently and accurately by inserting a cytosine across from the lesion and by proficiently extending from this base pair. Consistent with these biochemical studies, a synergistic increase in the rate of spontaneous mutations occurs in the absence of POLη in the yeast ogg1Δ mutant. Our results suggest an additional role for Polη in the prevention of internal cancers in humans that would otherwise result from the mutagenic replication of 8-oxoG in DNA.

UR - http://www.scopus.com/inward/record.url?scp=0034425754&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034425754&partnerID=8YFLogxK

U2 - 10.1038/78169

DO - 10.1038/78169

M3 - Article

VL - 25

SP - 458

EP - 461

JO - Nature Genetics

JF - Nature Genetics

SN - 1061-4036

IS - 4

ER -