Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response

Clayton E. Kibler, Sarah L. Milligan, Tierra R. Farris, Bing Zhu, Shubhajit Mitra, Jere McBride

Research output: Contribution to journalArticle

Abstract

Ehrlichia chaffeensis is an obligately intracellular bacterium that establishes infection in mononuclear phagocytes through largely undefined reprogramming strategies including modulation of host gene transcription. In this study, we demonstrate that the E. chaffeensis effector TRP47 enters the host cell nucleus and binds regulatory regions of host genes relevant to infection. TRP47 was observed in the nucleus of E. chaffeensis-infected host cells, and nuclear localization was dependent on a variant MYND-binding domain. An electrophoretic mobility shift assay (EMSA) demonstrated that TRP47 directly binds host DNA via its tandem repeat domain. Utilizing chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) with E. chaffeensis-infected cells, TRP47 was found to bind at multiple sites in the human genome (n = 2,051 at p < 10−30). Ontology analysis identified genes involved in functions such as immune response, cytoskeletal organization, and signal transduction. TRP47-bound genes included RNA-coding genes, many of these linked to cell proliferation or apoptosis. Comparison of TRP47 binding sites with those of previously-identified E. chaffeensis nucleomodulins identified multiple genes and gene functional categories in common including intracellular transport, cell signaling, and transcriptional regulation. Further, motif analysis followed by EMSA with synthetic oligonucleotides containing discovered motifs revealed a conserved TRP47 DNA-binding motif. This study reveals that TRP47 is a nucleomodulin that enters the nucleus via a MYND-binding domain and appears to play a role in host cell reprogramming by regulation of transcription.

Original languageEnglish (US)
Article numbere0205983
JournalPLoS One
Volume13
Issue number11
DOIs
StatePublished - Nov 1 2018

Fingerprint

Ehrlichia chaffeensis
Signal transduction
signal transduction
Signal Transduction
Genes
immune response
genes
Electrophoretic mobility
Electrophoretic Mobility Shift Assay
Transcription
transcription (genetics)
Assays
DNA
cells
High-Throughput Nucleotide Sequencing
Nucleotide Motifs
Tandem Repeat Sequences
Cell signaling
DNA-binding domains
tandem repeat sequences

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response. / Kibler, Clayton E.; Milligan, Sarah L.; Farris, Tierra R.; Zhu, Bing; Mitra, Shubhajit; McBride, Jere.

In: PLoS One, Vol. 13, No. 11, e0205983, 01.11.2018.

Research output: Contribution to journalArticle

@article{4ee222f6dfa343b19f7bc1c0c223c590,
title = "Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response",
abstract = "Ehrlichia chaffeensis is an obligately intracellular bacterium that establishes infection in mononuclear phagocytes through largely undefined reprogramming strategies including modulation of host gene transcription. In this study, we demonstrate that the E. chaffeensis effector TRP47 enters the host cell nucleus and binds regulatory regions of host genes relevant to infection. TRP47 was observed in the nucleus of E. chaffeensis-infected host cells, and nuclear localization was dependent on a variant MYND-binding domain. An electrophoretic mobility shift assay (EMSA) demonstrated that TRP47 directly binds host DNA via its tandem repeat domain. Utilizing chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) with E. chaffeensis-infected cells, TRP47 was found to bind at multiple sites in the human genome (n = 2,051 at p < 10−30). Ontology analysis identified genes involved in functions such as immune response, cytoskeletal organization, and signal transduction. TRP47-bound genes included RNA-coding genes, many of these linked to cell proliferation or apoptosis. Comparison of TRP47 binding sites with those of previously-identified E. chaffeensis nucleomodulins identified multiple genes and gene functional categories in common including intracellular transport, cell signaling, and transcriptional regulation. Further, motif analysis followed by EMSA with synthetic oligonucleotides containing discovered motifs revealed a conserved TRP47 DNA-binding motif. This study reveals that TRP47 is a nucleomodulin that enters the nucleus via a MYND-binding domain and appears to play a role in host cell reprogramming by regulation of transcription.",
author = "Kibler, {Clayton E.} and Milligan, {Sarah L.} and Farris, {Tierra R.} and Bing Zhu and Shubhajit Mitra and Jere McBride",
year = "2018",
month = "11",
day = "1",
doi = "10.1371/journal.pone.0205983",
language = "English (US)",
volume = "13",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Ehrlichia chaffeensis TRP47 enters the nucleus via a MYND-binding domain-dependent mechanism and predominantly binds enhancers of host genes associated with signal transduction, cytoskeletal organization, and immune response

AU - Kibler, Clayton E.

AU - Milligan, Sarah L.

AU - Farris, Tierra R.

AU - Zhu, Bing

AU - Mitra, Shubhajit

AU - McBride, Jere

PY - 2018/11/1

Y1 - 2018/11/1

N2 - Ehrlichia chaffeensis is an obligately intracellular bacterium that establishes infection in mononuclear phagocytes through largely undefined reprogramming strategies including modulation of host gene transcription. In this study, we demonstrate that the E. chaffeensis effector TRP47 enters the host cell nucleus and binds regulatory regions of host genes relevant to infection. TRP47 was observed in the nucleus of E. chaffeensis-infected host cells, and nuclear localization was dependent on a variant MYND-binding domain. An electrophoretic mobility shift assay (EMSA) demonstrated that TRP47 directly binds host DNA via its tandem repeat domain. Utilizing chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) with E. chaffeensis-infected cells, TRP47 was found to bind at multiple sites in the human genome (n = 2,051 at p < 10−30). Ontology analysis identified genes involved in functions such as immune response, cytoskeletal organization, and signal transduction. TRP47-bound genes included RNA-coding genes, many of these linked to cell proliferation or apoptosis. Comparison of TRP47 binding sites with those of previously-identified E. chaffeensis nucleomodulins identified multiple genes and gene functional categories in common including intracellular transport, cell signaling, and transcriptional regulation. Further, motif analysis followed by EMSA with synthetic oligonucleotides containing discovered motifs revealed a conserved TRP47 DNA-binding motif. This study reveals that TRP47 is a nucleomodulin that enters the nucleus via a MYND-binding domain and appears to play a role in host cell reprogramming by regulation of transcription.

AB - Ehrlichia chaffeensis is an obligately intracellular bacterium that establishes infection in mononuclear phagocytes through largely undefined reprogramming strategies including modulation of host gene transcription. In this study, we demonstrate that the E. chaffeensis effector TRP47 enters the host cell nucleus and binds regulatory regions of host genes relevant to infection. TRP47 was observed in the nucleus of E. chaffeensis-infected host cells, and nuclear localization was dependent on a variant MYND-binding domain. An electrophoretic mobility shift assay (EMSA) demonstrated that TRP47 directly binds host DNA via its tandem repeat domain. Utilizing chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) with E. chaffeensis-infected cells, TRP47 was found to bind at multiple sites in the human genome (n = 2,051 at p < 10−30). Ontology analysis identified genes involved in functions such as immune response, cytoskeletal organization, and signal transduction. TRP47-bound genes included RNA-coding genes, many of these linked to cell proliferation or apoptosis. Comparison of TRP47 binding sites with those of previously-identified E. chaffeensis nucleomodulins identified multiple genes and gene functional categories in common including intracellular transport, cell signaling, and transcriptional regulation. Further, motif analysis followed by EMSA with synthetic oligonucleotides containing discovered motifs revealed a conserved TRP47 DNA-binding motif. This study reveals that TRP47 is a nucleomodulin that enters the nucleus via a MYND-binding domain and appears to play a role in host cell reprogramming by regulation of transcription.

UR - http://www.scopus.com/inward/record.url?scp=85056352406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056352406&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0205983

DO - 10.1371/journal.pone.0205983

M3 - Article

VL - 13

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 11

M1 - e0205983

ER -