TY - JOUR
T1 - Electronic structure of coordinatively unsaturated molybdenum and molybdenum oxide carbonyls
AU - Hossain, Ekram
AU - Jarrold, Caroline Chick
N1 - Funding Information:
This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy Grant DE-FG-2-07ER15889.
PY - 2009
Y1 - 2009
N2 - Results of density functional theory calculations on coordinatively unsaturated molybdenum carbonyl and molybdenum oxide carbonyl anion and neutral complexes observed in previous experimental studies [Wyrwas, Robertson, and Jarrold, J. Chem. Phys. 126, 214309 (2007)] and extended to related complexes are reported. The ground and low-lying electronic states were calculated for the most stable structures predicted for Mo (CO) n /Mo (CO) n- (n=1-3, 5 and 6), MoO (CO) n /MoO (CO) n- (n=0-3), and MoO2 (CO) n / MoO2 (CO) n- (n=0-2). Interesting trends are predicted with CO addition, electron addition, and oxidation of the Mo center. In all cases, anions have stronger Mo-CO bond energies, which is attributed to enhanced π CO backdonation. This enhancement is more dramatic for the molybdenum oxo complexes because the highest occupied molecular orbitals shift from Mo to the π CO backbonds with the addition of oxygen to the Mo center. Sequential addition of CO for all species results in a sequential stabilization of low spin states and a destabilization of higher spin states. Further, average Mo-CO bond lengths increase as carbonyls are sequentially added. This effect is attributed to fewer electrons per Mo-CO π CO backbond. Finally, addition of O to Mo (CO) n appears to weaken the Mo-CO bonds, and addition of CO to MoOn appears to weaken Mo-O bonds. The calculations are validated by favorable agreement between the available measured anion photoelectron spectra and simulated spectra based only on calculated spectroscopic parameters (vibrational frequencies and normal coordinate displacements).
AB - Results of density functional theory calculations on coordinatively unsaturated molybdenum carbonyl and molybdenum oxide carbonyl anion and neutral complexes observed in previous experimental studies [Wyrwas, Robertson, and Jarrold, J. Chem. Phys. 126, 214309 (2007)] and extended to related complexes are reported. The ground and low-lying electronic states were calculated for the most stable structures predicted for Mo (CO) n /Mo (CO) n- (n=1-3, 5 and 6), MoO (CO) n /MoO (CO) n- (n=0-3), and MoO2 (CO) n / MoO2 (CO) n- (n=0-2). Interesting trends are predicted with CO addition, electron addition, and oxidation of the Mo center. In all cases, anions have stronger Mo-CO bond energies, which is attributed to enhanced π CO backdonation. This enhancement is more dramatic for the molybdenum oxo complexes because the highest occupied molecular orbitals shift from Mo to the π CO backbonds with the addition of oxygen to the Mo center. Sequential addition of CO for all species results in a sequential stabilization of low spin states and a destabilization of higher spin states. Further, average Mo-CO bond lengths increase as carbonyls are sequentially added. This effect is attributed to fewer electrons per Mo-CO π CO backbond. Finally, addition of O to Mo (CO) n appears to weaken the Mo-CO bonds, and addition of CO to MoOn appears to weaken Mo-O bonds. The calculations are validated by favorable agreement between the available measured anion photoelectron spectra and simulated spectra based only on calculated spectroscopic parameters (vibrational frequencies and normal coordinate displacements).
UR - http://www.scopus.com/inward/record.url?scp=60349132232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60349132232&partnerID=8YFLogxK
U2 - 10.1063/1.3073855
DO - 10.1063/1.3073855
M3 - Article
C2 - 19222272
AN - SCOPUS:60349132232
SN - 0021-9606
VL - 130
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 6
M1 - 064301
ER -