TY - JOUR
T1 - Elimination constant describing clearance of infused fluid from plasma is independent of large infusion volumes of 0.9% saline in sheep
AU - Svensén, Christer H.
AU - Brauer, Kirk P.
AU - Hahn, Robert G.
AU - Uchida, Tatsuo
AU - Traber, Lillian D.
AU - Traber, Daniel L.
AU - Prough, Donald S.
N1 - Funding Information:
Supported by the Special Shared Facility Lung Lymph Laboratory #8450, Shriners Burns Hospital, Galveston, Texas 77550 and the Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas.
PY - 2004/9
Y1 - 2004/9
N2 - Background: The purpose of this study was to determine the influence of varying large crystalloid infusion volumes, ranging from a volume that has been safely administered to volunteers to a volume that greatly exceeds a practical volume for studies in normovolemic humans, of rapidly infused 0.9% saline on the elimination rate constant in sheep. Methods: Six sheep underwent three randomly ordered, 20 min, intravenous infusions of 0.9% saline in volumes of 25 ml/kg, 50 ml/kg and 100 ml/kg. Repeated measurements of arterial plasma dilution were analyzed using the volume kinetic approach to determine the apparent volumes of the central (V1) and peripheral (V2) body fluid spaces, the elimination rate constant (kr) describing clearance from the central fluid space and the rate constant (kt) for the diffusion of fluid between the central and the peripheral fluid spaces. The latter constant was split in to two constants, one describing flow out from the central fluid space and one describing flow into the central fluid space. Urinary output was measured in all sheep. Results: kr was comparable at each infused volume (38.3 ± 4.5, 32.2 ± 4.2, and 36.7 ± 7.0 ml/min, respectively, in the 25 ml/kg, 50 ml/kg, and 100 ml/kg protocols). However, for the largest infusion, other kinetic parameters were influenced by the magnitude of the infusion. V2 was significantly increased (P < 0.05) and the area under the dilution-time curve divided by the infused volume was 20% lower for the largest infusion (P < 0.03). Although urinary output increased as the infusion volume increased, only 59% of the administered volume had been excreted at 180 min after the 100 ml/kg infusion as compared with approximately 90% after the other two infusions (P < 0.01). Conclusions: Elimination from the central fluid space of large, rapidly infused volumes of saline solution is independent of infused volume. Larger volumes are apparently cleared from the central fluid space (V1) by expansion of a peripheral volume (V 2) as renal excretion fails to increase in proportion to the volume of infused fluid.
AB - Background: The purpose of this study was to determine the influence of varying large crystalloid infusion volumes, ranging from a volume that has been safely administered to volunteers to a volume that greatly exceeds a practical volume for studies in normovolemic humans, of rapidly infused 0.9% saline on the elimination rate constant in sheep. Methods: Six sheep underwent three randomly ordered, 20 min, intravenous infusions of 0.9% saline in volumes of 25 ml/kg, 50 ml/kg and 100 ml/kg. Repeated measurements of arterial plasma dilution were analyzed using the volume kinetic approach to determine the apparent volumes of the central (V1) and peripheral (V2) body fluid spaces, the elimination rate constant (kr) describing clearance from the central fluid space and the rate constant (kt) for the diffusion of fluid between the central and the peripheral fluid spaces. The latter constant was split in to two constants, one describing flow out from the central fluid space and one describing flow into the central fluid space. Urinary output was measured in all sheep. Results: kr was comparable at each infused volume (38.3 ± 4.5, 32.2 ± 4.2, and 36.7 ± 7.0 ml/min, respectively, in the 25 ml/kg, 50 ml/kg, and 100 ml/kg protocols). However, for the largest infusion, other kinetic parameters were influenced by the magnitude of the infusion. V2 was significantly increased (P < 0.05) and the area under the dilution-time curve divided by the infused volume was 20% lower for the largest infusion (P < 0.03). Although urinary output increased as the infusion volume increased, only 59% of the administered volume had been excreted at 180 min after the 100 ml/kg infusion as compared with approximately 90% after the other two infusions (P < 0.01). Conclusions: Elimination from the central fluid space of large, rapidly infused volumes of saline solution is independent of infused volume. Larger volumes are apparently cleared from the central fluid space (V1) by expansion of a peripheral volume (V 2) as renal excretion fails to increase in proportion to the volume of infused fluid.
UR - http://www.scopus.com/inward/record.url?scp=4344618616&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344618616&partnerID=8YFLogxK
U2 - 10.1097/00000542-200409000-00015
DO - 10.1097/00000542-200409000-00015
M3 - Article
C2 - 15329591
AN - SCOPUS:4344618616
SN - 0003-3022
VL - 101
SP - 666
EP - 674
JO - Anesthesiology
JF - Anesthesiology
IS - 3
ER -