TY - JOUR
T1 - Endomicroscopy will track injected mesenchymal stem cells in rat colitis models
AU - Li, Ming
AU - Zhang, Yi Xin
AU - Zhang, Zhen
AU - Zhou, Xiao Yan
AU - Zuo, Xiu Li
AU - Cong, Yingzi
AU - Li, Yan Qing
N1 - Publisher Copyright:
© 2015 Crohn's & Colitis Foundation of America, Inc.
PY - 2015/6/12
Y1 - 2015/6/12
N2 - Background: Mesenchymal stem cells (MSCs) have demonstrated significant potentials for the treatment of inflammatory bowel disease. Clinical feasible methods to individually document the MSC recruitment to intestinal mucosa is lacking. Here, we proposed that endomicroscopy could noninvasively track MSCs in vivo at cellular resolution. Method: Isolated Sprague Dawley rat MSC was characterized, fluorescently labeled, and imaged ex vivo using an endomicroscope. Then enhanced green fluorescent protein (eGFP)-labeled MSC was tracked in vivo, and acquired images were compared with immunofluorescence, immunohistology, and fluorescent in situ hybridization results. Results: Endomicroscopy visualized clearly the eGFP-labeled or carboxyfluorescein succinimidyl ester-stained MSC ex vivo. Endomicroscopy using the FIVE1 system could track eGFP-labeled MSC with distinct in vivo features. Immunofluorescence, immunohistochemistry, and fluorescent in situ hybridization confirmed the presence of eGFP-positive cells. In vivo endomicroscopy could quantify the transplanted MSCs that homed to colonic mucosa of the recipient rat in multiple models, including the rat-to-rat allograft, human-to-rat xenograft, hypoxia-induced MSC, and busulfan immunosuppressed recipient rat models. After hypoxia induction, there was a trend of enhanced rat MSC homing to the inflamed mucosa as visualized by endomicroscopy (114.1 in hypoxia group versus 34.3 in other 3 groups combined, t 2.14, P 0.0644). Conclusions: Endomicroscopy is a novel and promising tool to track transplanted MSCs to the colonic mucosa. This clinical available noninvasive cellular tracking method may provide new insight to individualize each recipient's regimen in the future.
AB - Background: Mesenchymal stem cells (MSCs) have demonstrated significant potentials for the treatment of inflammatory bowel disease. Clinical feasible methods to individually document the MSC recruitment to intestinal mucosa is lacking. Here, we proposed that endomicroscopy could noninvasively track MSCs in vivo at cellular resolution. Method: Isolated Sprague Dawley rat MSC was characterized, fluorescently labeled, and imaged ex vivo using an endomicroscope. Then enhanced green fluorescent protein (eGFP)-labeled MSC was tracked in vivo, and acquired images were compared with immunofluorescence, immunohistology, and fluorescent in situ hybridization results. Results: Endomicroscopy visualized clearly the eGFP-labeled or carboxyfluorescein succinimidyl ester-stained MSC ex vivo. Endomicroscopy using the FIVE1 system could track eGFP-labeled MSC with distinct in vivo features. Immunofluorescence, immunohistochemistry, and fluorescent in situ hybridization confirmed the presence of eGFP-positive cells. In vivo endomicroscopy could quantify the transplanted MSCs that homed to colonic mucosa of the recipient rat in multiple models, including the rat-to-rat allograft, human-to-rat xenograft, hypoxia-induced MSC, and busulfan immunosuppressed recipient rat models. After hypoxia induction, there was a trend of enhanced rat MSC homing to the inflamed mucosa as visualized by endomicroscopy (114.1 in hypoxia group versus 34.3 in other 3 groups combined, t 2.14, P 0.0644). Conclusions: Endomicroscopy is a novel and promising tool to track transplanted MSCs to the colonic mucosa. This clinical available noninvasive cellular tracking method may provide new insight to individualize each recipient's regimen in the future.
KW - confocal laser endomicroscope
KW - inflammatory bowel disease
KW - mesenchymal stem cells
UR - http://www.scopus.com/inward/record.url?scp=84940903659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940903659&partnerID=8YFLogxK
U2 - 10.1097/MIB.0000000000000458
DO - 10.1097/MIB.0000000000000458
M3 - Article
C2 - 25993690
AN - SCOPUS:84940903659
SN - 1078-0998
VL - 21
SP - 2068
EP - 2077
JO - Inflammatory bowel diseases
JF - Inflammatory bowel diseases
IS - 9
ER -