Enhancement of adult muscle regeneration by primary myoblast transplantation

J. F. DeRosimo, C. H. Washabaugh, M. P. Ontell, M. J. Daood, J. F. Watchko, S. C. Watkins, B. T. Ameredes, M. Ontell

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Extensor digitorum longus muscles (EDL) of SCID mice were induced to undergo degeneration-regeneration subsequent to orthotopic, whole-muscle transplantation. Two days after transplantation some of these muscles received injections of primary myoblasts derived from EDL muscles of transgenic mice, which express nuclear localizing β-galactosidase under the control of the myosin light-chain 3F promoter and enhancer. Nine weeks after transplantation, regenerated muscles that received exogenous myoblasts were compared to similarly transplanted muscles that received no further treatment and to unoperated EDL muscles in order to determine the effect of myoblast transfer on muscle regeneration. Many myofibers containing donor-derived myonuclei could be identified in the regenerated muscles that had received exogenous myoblasts. The mass of the muscles subjected to transplantation only was significantly less (31% less) than that of unoperated muscles. The addition of exogenous myoblasts to the regenerating EDL resulted in a muscle mass similar to that of unoperated muscles. The absolute twitch and tetanic tensions and specific twitch and tetanic tensions of transplant-only muscles were 28%. 36%, 32%, and 41%, respectively, of those of unoperated muscles. Myoblast transfer increased the absolute twitch and tetanic tensions of the regenerated muscles by 65% and 74%, respectively, and their specific twitch and tetanic tensions were increased by 41% and 48%, respectively. These data suggest a possible role for the addition of exogenous, primary myoblasts in the treatment of traumatized and/or diseased muscles that are characterized by myofiber loss.

Original languageEnglish (US)
Pages (from-to)369-377
Number of pages9
JournalCell Transplantation
Issue number3
StatePublished - 2000
Externally publishedYes


  • Functional capacity
  • Muscle regeneration
  • Myoblast transfer
  • Primary myoblasts
  • Striated muscle

ASJC Scopus subject areas

  • Transplantation
  • Biomedical Engineering
  • Cell Biology


Dive into the research topics of 'Enhancement of adult muscle regeneration by primary myoblast transplantation'. Together they form a unique fingerprint.

Cite this