Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities

Tomasz Heyduk, James Lee

Research output: Contribution to journalArticle

112 Citations (Scopus)

Abstract

Cyclic AMP receptor protein (CRP) from Escherichia coli is assumed to exist in two states, namely, those represented by the free protein and that of the ligand-protein complex. To establish a quantitative structure-function relation between cAMP binding and the cAMP-induced conformational changes in the receptor, protein conformational change was quantitated as a function of cAMP concentration up to 10 mM. The protein conformation was monitored by four different methods at pH 7.8 and 23°C, namely, rate of proteolytic digestion by subtilisin, rate of chemical modification of Cys-178, tryptophan fluorescence, and fluorescence of the extrinsic fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). Each of these techniques reveals a biphasic dependence of protein conformation on cAMP concentration. At low cAMP concentrations ranging from 0 to 200 μM, the rates of proteolytic digestion and that of Cys-178 modification increase, whereas the fluorescence intensity of the ANS-protein complex is quenched, and there is no change in the fluorescence intensity of the tryptophan residues in the protein. At higher cAMP concentrations, the rates of proteolytic and chemical modification of the protein decrease, while the fluorescence intensity of the ANS-protein complex is further quenched but there is an increase in the intensity of tryptophan fluorescence. These results show unequivocally that there are at least three conformational states of the protein. The association constants for the formation of CRP-cAMP and CRP-(cAMP)2 complexes derived from conformational studies are in good agreement with those determined by equilibrium dialysis, nonequilibrium dialysis, and ultrafiltration. Therefore, the simplest explanation would be that the protein exhibits three conformational states, free CRP and two cAMP-dependent states, which correspond to the CRP-cAMP and CRP-(cAMP)2 complexes. The binding properties of CRP-cAMP and CRP-(cAMP)2 to the lac promoter were studied by using the gel retardation technique. At a high concentration of cAMP which favors the formation of the CRP-(cAMP)2 complex, binding of the protein to DNA is decreased. This, together with conformational data, strongly suggests that only the CRP-cAMP complex is active in specific DNA binding whereas CRP and CRP-(cAMP)2 are not.

Original languageEnglish (US)
Pages (from-to)6914-6924
Number of pages11
JournalBiochemistry
Volume28
Issue number17
StatePublished - 1989
Externally publishedYes

Fingerprint

Cyclic AMP Receptor Protein
Escherichia coli Proteins
Escherichia coli
Fluorescence
Proteins
Tryptophan
Protein Conformation
Dialysis
Chemical modification
Conformations
Digestion
Subtilisin
DNA
DNA-Binding Proteins
Ultrafiltration

ASJC Scopus subject areas

  • Biochemistry

Cite this

Escherichia coli cAMP receptor protein : Evidence for three protein conformational states with different promoter binding affinities. / Heyduk, Tomasz; Lee, James.

In: Biochemistry, Vol. 28, No. 17, 1989, p. 6914-6924.

Research output: Contribution to journalArticle

@article{d41cc91b737f4840a84aba4f90d07198,
title = "Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities",
abstract = "Cyclic AMP receptor protein (CRP) from Escherichia coli is assumed to exist in two states, namely, those represented by the free protein and that of the ligand-protein complex. To establish a quantitative structure-function relation between cAMP binding and the cAMP-induced conformational changes in the receptor, protein conformational change was quantitated as a function of cAMP concentration up to 10 mM. The protein conformation was monitored by four different methods at pH 7.8 and 23°C, namely, rate of proteolytic digestion by subtilisin, rate of chemical modification of Cys-178, tryptophan fluorescence, and fluorescence of the extrinsic fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). Each of these techniques reveals a biphasic dependence of protein conformation on cAMP concentration. At low cAMP concentrations ranging from 0 to 200 μM, the rates of proteolytic digestion and that of Cys-178 modification increase, whereas the fluorescence intensity of the ANS-protein complex is quenched, and there is no change in the fluorescence intensity of the tryptophan residues in the protein. At higher cAMP concentrations, the rates of proteolytic and chemical modification of the protein decrease, while the fluorescence intensity of the ANS-protein complex is further quenched but there is an increase in the intensity of tryptophan fluorescence. These results show unequivocally that there are at least three conformational states of the protein. The association constants for the formation of CRP-cAMP and CRP-(cAMP)2 complexes derived from conformational studies are in good agreement with those determined by equilibrium dialysis, nonequilibrium dialysis, and ultrafiltration. Therefore, the simplest explanation would be that the protein exhibits three conformational states, free CRP and two cAMP-dependent states, which correspond to the CRP-cAMP and CRP-(cAMP)2 complexes. The binding properties of CRP-cAMP and CRP-(cAMP)2 to the lac promoter were studied by using the gel retardation technique. At a high concentration of cAMP which favors the formation of the CRP-(cAMP)2 complex, binding of the protein to DNA is decreased. This, together with conformational data, strongly suggests that only the CRP-cAMP complex is active in specific DNA binding whereas CRP and CRP-(cAMP)2 are not.",
author = "Tomasz Heyduk and James Lee",
year = "1989",
language = "English (US)",
volume = "28",
pages = "6914--6924",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "17",

}

TY - JOUR

T1 - Escherichia coli cAMP receptor protein

T2 - Evidence for three protein conformational states with different promoter binding affinities

AU - Heyduk, Tomasz

AU - Lee, James

PY - 1989

Y1 - 1989

N2 - Cyclic AMP receptor protein (CRP) from Escherichia coli is assumed to exist in two states, namely, those represented by the free protein and that of the ligand-protein complex. To establish a quantitative structure-function relation between cAMP binding and the cAMP-induced conformational changes in the receptor, protein conformational change was quantitated as a function of cAMP concentration up to 10 mM. The protein conformation was monitored by four different methods at pH 7.8 and 23°C, namely, rate of proteolytic digestion by subtilisin, rate of chemical modification of Cys-178, tryptophan fluorescence, and fluorescence of the extrinsic fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). Each of these techniques reveals a biphasic dependence of protein conformation on cAMP concentration. At low cAMP concentrations ranging from 0 to 200 μM, the rates of proteolytic digestion and that of Cys-178 modification increase, whereas the fluorescence intensity of the ANS-protein complex is quenched, and there is no change in the fluorescence intensity of the tryptophan residues in the protein. At higher cAMP concentrations, the rates of proteolytic and chemical modification of the protein decrease, while the fluorescence intensity of the ANS-protein complex is further quenched but there is an increase in the intensity of tryptophan fluorescence. These results show unequivocally that there are at least three conformational states of the protein. The association constants for the formation of CRP-cAMP and CRP-(cAMP)2 complexes derived from conformational studies are in good agreement with those determined by equilibrium dialysis, nonequilibrium dialysis, and ultrafiltration. Therefore, the simplest explanation would be that the protein exhibits three conformational states, free CRP and two cAMP-dependent states, which correspond to the CRP-cAMP and CRP-(cAMP)2 complexes. The binding properties of CRP-cAMP and CRP-(cAMP)2 to the lac promoter were studied by using the gel retardation technique. At a high concentration of cAMP which favors the formation of the CRP-(cAMP)2 complex, binding of the protein to DNA is decreased. This, together with conformational data, strongly suggests that only the CRP-cAMP complex is active in specific DNA binding whereas CRP and CRP-(cAMP)2 are not.

AB - Cyclic AMP receptor protein (CRP) from Escherichia coli is assumed to exist in two states, namely, those represented by the free protein and that of the ligand-protein complex. To establish a quantitative structure-function relation between cAMP binding and the cAMP-induced conformational changes in the receptor, protein conformational change was quantitated as a function of cAMP concentration up to 10 mM. The protein conformation was monitored by four different methods at pH 7.8 and 23°C, namely, rate of proteolytic digestion by subtilisin, rate of chemical modification of Cys-178, tryptophan fluorescence, and fluorescence of the extrinsic fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). Each of these techniques reveals a biphasic dependence of protein conformation on cAMP concentration. At low cAMP concentrations ranging from 0 to 200 μM, the rates of proteolytic digestion and that of Cys-178 modification increase, whereas the fluorescence intensity of the ANS-protein complex is quenched, and there is no change in the fluorescence intensity of the tryptophan residues in the protein. At higher cAMP concentrations, the rates of proteolytic and chemical modification of the protein decrease, while the fluorescence intensity of the ANS-protein complex is further quenched but there is an increase in the intensity of tryptophan fluorescence. These results show unequivocally that there are at least three conformational states of the protein. The association constants for the formation of CRP-cAMP and CRP-(cAMP)2 complexes derived from conformational studies are in good agreement with those determined by equilibrium dialysis, nonequilibrium dialysis, and ultrafiltration. Therefore, the simplest explanation would be that the protein exhibits three conformational states, free CRP and two cAMP-dependent states, which correspond to the CRP-cAMP and CRP-(cAMP)2 complexes. The binding properties of CRP-cAMP and CRP-(cAMP)2 to the lac promoter were studied by using the gel retardation technique. At a high concentration of cAMP which favors the formation of the CRP-(cAMP)2 complex, binding of the protein to DNA is decreased. This, together with conformational data, strongly suggests that only the CRP-cAMP complex is active in specific DNA binding whereas CRP and CRP-(cAMP)2 are not.

UR - http://www.scopus.com/inward/record.url?scp=0024462882&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024462882&partnerID=8YFLogxK

M3 - Article

C2 - 2554959

AN - SCOPUS:0024462882

VL - 28

SP - 6914

EP - 6924

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 17

ER -