Ethyl palmitate and ethyl oleate are the predominant fatty acid ethyl esters in the blood after ethanol ingestion and their synthesis is differentially influenced by the extracellular concentrations of their corresponding fatty acids

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

The possibility that fatty acid ethyl esters (FAEEs), esterification products of fatty acids and ethanol, are mediators of ethanol-induced organ damage was suggested by an autopsy study in which individuals who died while acutely intoxicated were found to have FAEEs predominantly in the organs damaged by ethanol abuse. We initially observed in human subjects after ethanol consumption that there is a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs. To investigate the basis for this relative fatty acid specificity for FAEE synthesis, we used an in vitro system of Hep G2 cells incubated with ethanol. The cells were capable of synthesizing FAEEs upon exposure to ethanol and they showed a preference for synthesis of ethyl palmitate and ethyl oleate, as was found in human plasma after ethanol ingestion. This finding allowed us to explore the metabolic preference for palmitate and oleate in FAEE synthesis at the biochemical level using intact cells. We demonstrated that the preferential selection of palmitate and oleate for FAEE synthesis was not likely to be the result of specificity for palmitate and oleate by FAEE synthase or preferential uptake of palmitate and oleate by Hep G2 cells. In studies to determine whether the preference for ethyl palmitate and ethyl oleate synthesis was a result of higher concentrations of palmitate and oleate in the extracellular medium, we observed that the synthesis of ethyl oleate, ethyl oleate, and ethyl arachidonate, but not ethyl palmitate, is influenced by the extracellular concentration of its corresponding fatty acid. The results of our studies indicate that ethyl palmitate and ethyl oleate are the predominant ethyl esters synthesized, that there is no preferential uptake or enzyme affinity for their fatty acid precursors to explain the predominance, and that ethyl palmitate synthesis is uniquely unaffected by the concentration of palmitate in the extracellular medium.

Original languageEnglish (US)
Pages (from-to)286-292
Number of pages7
JournalAlcoholism: Clinical and Experimental Research
Volume21
Issue number2
StatePublished - 1997
Externally publishedYes

Fingerprint

Esters
Blood
Ethanol
Fatty Acids
Eating
Palmitates
Oleic Acid
Hep G2 Cells
ethyl oleate
ethyl palmitate
Plasma (human)
Esterification
Autopsy
Enzymes

Keywords

  • Ethanol
  • Fatty Acid
  • Fatty Acid Ethyl Ester
  • Hep G2 Cells

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Toxicology

Cite this

@article{c7f982bf78704d9a825ea95eb0ddb78b,
title = "Ethyl palmitate and ethyl oleate are the predominant fatty acid ethyl esters in the blood after ethanol ingestion and their synthesis is differentially influenced by the extracellular concentrations of their corresponding fatty acids",
abstract = "The possibility that fatty acid ethyl esters (FAEEs), esterification products of fatty acids and ethanol, are mediators of ethanol-induced organ damage was suggested by an autopsy study in which individuals who died while acutely intoxicated were found to have FAEEs predominantly in the organs damaged by ethanol abuse. We initially observed in human subjects after ethanol consumption that there is a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs. To investigate the basis for this relative fatty acid specificity for FAEE synthesis, we used an in vitro system of Hep G2 cells incubated with ethanol. The cells were capable of synthesizing FAEEs upon exposure to ethanol and they showed a preference for synthesis of ethyl palmitate and ethyl oleate, as was found in human plasma after ethanol ingestion. This finding allowed us to explore the metabolic preference for palmitate and oleate in FAEE synthesis at the biochemical level using intact cells. We demonstrated that the preferential selection of palmitate and oleate for FAEE synthesis was not likely to be the result of specificity for palmitate and oleate by FAEE synthase or preferential uptake of palmitate and oleate by Hep G2 cells. In studies to determine whether the preference for ethyl palmitate and ethyl oleate synthesis was a result of higher concentrations of palmitate and oleate in the extracellular medium, we observed that the synthesis of ethyl oleate, ethyl oleate, and ethyl arachidonate, but not ethyl palmitate, is influenced by the extracellular concentration of its corresponding fatty acid. The results of our studies indicate that ethyl palmitate and ethyl oleate are the predominant ethyl esters synthesized, that there is no preferential uptake or enzyme affinity for their fatty acid precursors to explain the predominance, and that ethyl palmitate synthesis is uniquely unaffected by the concentration of palmitate in the extracellular medium.",
keywords = "Ethanol, Fatty Acid, Fatty Acid Ethyl Ester, Hep G2 Cells",
author = "Li Dan and Michael Laposata",
year = "1997",
language = "English (US)",
volume = "21",
pages = "286--292",
journal = "Alcoholism: Clinical and Experimental Research",
issn = "0145-6008",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Ethyl palmitate and ethyl oleate are the predominant fatty acid ethyl esters in the blood after ethanol ingestion and their synthesis is differentially influenced by the extracellular concentrations of their corresponding fatty acids

AU - Dan, Li

AU - Laposata, Michael

PY - 1997

Y1 - 1997

N2 - The possibility that fatty acid ethyl esters (FAEEs), esterification products of fatty acids and ethanol, are mediators of ethanol-induced organ damage was suggested by an autopsy study in which individuals who died while acutely intoxicated were found to have FAEEs predominantly in the organs damaged by ethanol abuse. We initially observed in human subjects after ethanol consumption that there is a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs. To investigate the basis for this relative fatty acid specificity for FAEE synthesis, we used an in vitro system of Hep G2 cells incubated with ethanol. The cells were capable of synthesizing FAEEs upon exposure to ethanol and they showed a preference for synthesis of ethyl palmitate and ethyl oleate, as was found in human plasma after ethanol ingestion. This finding allowed us to explore the metabolic preference for palmitate and oleate in FAEE synthesis at the biochemical level using intact cells. We demonstrated that the preferential selection of palmitate and oleate for FAEE synthesis was not likely to be the result of specificity for palmitate and oleate by FAEE synthase or preferential uptake of palmitate and oleate by Hep G2 cells. In studies to determine whether the preference for ethyl palmitate and ethyl oleate synthesis was a result of higher concentrations of palmitate and oleate in the extracellular medium, we observed that the synthesis of ethyl oleate, ethyl oleate, and ethyl arachidonate, but not ethyl palmitate, is influenced by the extracellular concentration of its corresponding fatty acid. The results of our studies indicate that ethyl palmitate and ethyl oleate are the predominant ethyl esters synthesized, that there is no preferential uptake or enzyme affinity for their fatty acid precursors to explain the predominance, and that ethyl palmitate synthesis is uniquely unaffected by the concentration of palmitate in the extracellular medium.

AB - The possibility that fatty acid ethyl esters (FAEEs), esterification products of fatty acids and ethanol, are mediators of ethanol-induced organ damage was suggested by an autopsy study in which individuals who died while acutely intoxicated were found to have FAEEs predominantly in the organs damaged by ethanol abuse. We initially observed in human subjects after ethanol consumption that there is a marked preference for the synthesis of ethyl palmitate and ethyl oleate over other FAEEs. To investigate the basis for this relative fatty acid specificity for FAEE synthesis, we used an in vitro system of Hep G2 cells incubated with ethanol. The cells were capable of synthesizing FAEEs upon exposure to ethanol and they showed a preference for synthesis of ethyl palmitate and ethyl oleate, as was found in human plasma after ethanol ingestion. This finding allowed us to explore the metabolic preference for palmitate and oleate in FAEE synthesis at the biochemical level using intact cells. We demonstrated that the preferential selection of palmitate and oleate for FAEE synthesis was not likely to be the result of specificity for palmitate and oleate by FAEE synthase or preferential uptake of palmitate and oleate by Hep G2 cells. In studies to determine whether the preference for ethyl palmitate and ethyl oleate synthesis was a result of higher concentrations of palmitate and oleate in the extracellular medium, we observed that the synthesis of ethyl oleate, ethyl oleate, and ethyl arachidonate, but not ethyl palmitate, is influenced by the extracellular concentration of its corresponding fatty acid. The results of our studies indicate that ethyl palmitate and ethyl oleate are the predominant ethyl esters synthesized, that there is no preferential uptake or enzyme affinity for their fatty acid precursors to explain the predominance, and that ethyl palmitate synthesis is uniquely unaffected by the concentration of palmitate in the extracellular medium.

KW - Ethanol

KW - Fatty Acid

KW - Fatty Acid Ethyl Ester

KW - Hep G2 Cells

UR - http://www.scopus.com/inward/record.url?scp=0031003658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031003658&partnerID=8YFLogxK

M3 - Article

VL - 21

SP - 286

EP - 292

JO - Alcoholism: Clinical and Experimental Research

JF - Alcoholism: Clinical and Experimental Research

SN - 0145-6008

IS - 2

ER -