Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome

Dora Abraham, Janos Feher, Gian Luca Scuderi, Dora Szabo, Arpad Dobolyi, Melinda Cservenak, Janos Juhasz, Balazs Ligeti, Sandor Pongor, Mari Carmen Gomez-Cabrera, Jose Vina, Mitsuru Higuchi, Katsuhiro Suzuki, Istvan Boldogh, Zsolt Radak

    Research output: Contribution to journalArticle

    21 Scopus citations

    Abstract

    It has been suggested that exercise training and probiotic supplementation could decelerate the progress of functional and biochemical deterioration in APP/PS1 transgenic mice (APP/PS1TG). APP/PS1TG mice were subjected to exercise training and probiotic treatments and functional, biochemical and microbiome markers were analyzed. Under these conditions the mice significantly outperformed controls on The Morris Maze Test, and the number of beta-amyloid plaques decreased in the hippocampus. B. thetaiotaomicron levels correlated highly with the results of the Morris Maze Test (p < 0.05), and this group of bacteria was significantly elevated in the microbiome of the APP/PS1TG mice compared to the wild type. L. johnsonii levels positively correlated with the beta amyloid content and area. Data revealed that exercise and probiotic treatment can decrease the progress of Alzheimer's Disease and the beneficial effects could be partly mediated by alteration of the microbiome.

    Original languageEnglish (US)
    Pages (from-to)122-131
    Number of pages10
    JournalExperimental Gerontology
    Volume115
    DOIs
    StatePublished - Jan 1 2019

    Keywords

    • Alzheimer
    • Exercise
    • Microbiome
    • Probiotics

    ASJC Scopus subject areas

    • Biochemistry
    • Aging
    • Molecular Biology
    • Genetics
    • Endocrinology
    • Cell Biology

    Fingerprint Dive into the research topics of 'Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome'. Together they form a unique fingerprint.

  • Cite this

    Abraham, D., Feher, J., Scuderi, G. L., Szabo, D., Dobolyi, A., Cservenak, M., Juhasz, J., Ligeti, B., Pongor, S., Gomez-Cabrera, M. C., Vina, J., Higuchi, M., Suzuki, K., Boldogh, I., & Radak, Z. (2019). Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome. Experimental Gerontology, 115, 122-131. https://doi.org/10.1016/j.exger.2018.12.005