Exercise increases markers of spermatogenesis in rats selectively bred for low running capacity

Ferenc Torma, Erika Koltai, Eniko Nagy, Mohammad Mosaferi Ziaaldini, Aniko Posa, Lauren G. Koch, Steven L. Britton, Istvan Boldogh, Zsolt Radak

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twentyfour 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1a), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.

Original languageEnglish (US)
Article numbere11407
JournalPloS one
Volume9
Issue number12
DOIs
StatePublished - Dec 10 2014

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Exercise increases markers of spermatogenesis in rats selectively bred for low running capacity'. Together they form a unique fingerprint.

Cite this